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Abstract. Let {dk}k≥0 be a complex martingale difference in Lp[0, 1], where

1 < p < ∞, and {εk}k≥0 a sequence in {±1}. We obtain the following general-

ization of Burkholder’s famous result. If τ ∈ [− 1
2
, 1
2
] and n ∈ Z+ then∥∥∥∥∥

n∑
k=0

(
εk

τ

)
dk

∥∥∥∥∥
Lp([0,1),C2)

≤ ((p∗ − 1)2 + τ2)
1
2

∥∥∥∥∥
n∑

k=0

dk

∥∥∥∥∥
Lp([0,1),C)

,

where ((p∗ − 1)2 + τ2)
1
2 is sharp and p∗ − 1 = max{p− 1, 1

p−1
}. For 2 ≤ p <∞

the result is also true with sharp constant for |τ | ≤ 1.

1. Introduction

Determining the Lp operator norm of singular integrals is quite difficult, in many

cases. While the operator norm of the Hilbert transform can be computed by means

of classical techniques, see Pichorides [17], the Ahlfors–Beurling operator (the two

dimensional analog), denoted T, cannot. It was shown in 1965, by Lehto [15], that

‖T‖p→p ≥ p∗− 1. Iwaniec conjectured in 1982, see [14], that ‖T‖p→p = p∗− 1. The

only progress toward showing the validity of this conjecture (see Nazarov, Volberg

[16] and Bañuelos, Janakiraman [3] for two of the large steps toward this) has been

using the fact that Burkholder computed the Lp operator norm of the martingale

transform in [7]. But, the estimates of martingale transform can also be used for

determining lower bounds, for example, for <T and =T in Geiss, Montgomery-

Smith, Saksman [13]. Operator T itself is a linear combination (of course) of <T
and =T . So we are interested in linear combinations of all second order Riesz

transforms. One can start with investigation of linear combination aR2
1 + bR2

2 of

Riesz transforms (leaving R1R2 alone for a while).

Actually Geiss, Montgomery-Smith, Saksman [13] shows that if one wants to

estimate any linear combination aR2
1 + bR2

2 of Riesz transforms, then one needs to

estimate a corresponding linear combination of Burkholder’s martingale transform

and the identity operator. “Corresponding” here means the following. Notice that
1
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aR2
1 + bR2

2 = a−b
2 (R2

1 −R2
2) + a+b

2 Id. Essentially we come to the need to estimate

(compute) the norm of (R2
1 − R2

2) + τ · Id, where τ is an arbitrary constant. Now

Geiss, Montgomery-Smith, Saksman [13] proved that the norm (R2
1−R2

2)+τ ·Id in

Lp(C) is bounded below by MT + τ · Id in Lp[0, 1] (see (1.1) below for a definition

of MT ). This is not formulated directly in [13], but it is easy to extract this claim

from [13].

The problem of computing the norm ofMT+τ ·Id in Lp seems to be very difficult.

It is done in two cases: 1) τ = 0 in [7], 2) τ = ±1, Choi [12]. For all other τ ’s it is

still open, and even though we have some approach to it, it seems interesting that

another type of perturbation of MT , namely the quadratic perturbation considered

in the present paper (and also in [1], [2]), seems to be relatively easy to handle.

This article will focus on setting up the Bellman function and using it to solve the

problem, but showing very little detail in the actual computation of the Bellman

function. For full details of the computation of the Bellman function, refer to [1].

Therefore, if we can determine the operator norm of a quadratic perturbation

of the martingale transform then we can also determine quadratic perturbations of

singular integrals as an application.

To prove the main result we are going to take a slightly indirect approach.

Burkholder (see [7]) defined the martingale transform, MTε, as

MTε

(
n∑
k=1

dk

)
:=

n∑
k=1

εkdk. (1.1)

Then the main result can be stated as

sup
~ε

∥∥∥∥∥
(
MT~ε

τI

)∥∥∥∥∥
Lp(C)→Lp(C2)

= sup
~ε

∥∥∥∥∥∑n
k=1

(
εk

τ

)
dk

∥∥∥∥∥
p

‖
∑n

k=1 dk‖p
= ((p∗ − 1)2 + τ2)

1
2 ,

where I is the identity transformation and τ is “small”. However, rather than

working with this martingale transform in terms of the martingale differences, in

a probabilistic setting, we will define another martingale transform in terms of the

Haar expansion of Lp[0, 1] functions and set up a Bellman function in that context.

Burkholder showed, in [11], that these two different martingale transforms have the

same Lp operator norm, for τ = 0, so we expected a perturbation of these to act

similarly, and they do. For convenience, we will work with the martingale transform

in the Haar setting. Using the Bellman function technique will turn the problem of
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finding the sharp constant of the above estimate into solving a second order partial

differential equation. The beauty of this approach is that it gets right to the

heart of the problem with very little advanced techniques needed in the process.

In fact, the only background material that is needed for the Bellman function

technique approach, is some basic knowledge of partial differential equations and

some elementary analysis.

Observe that for 2 ≤ p <∞, the estimate from above in the main result is just an

application of Minkowski’s inequality on L
p
2 and Burkholder’s original result. But,

this argument doesn’t address sharpness, even though the constant obtained turns

out to be the sharp constant for small τ . For 1 < p < 2, Minkowski’s inequality (in

l
2
p ) also plays a role, but to a lesser extent and cannot give the sharp constant, as

we will see Proposition 17. We will now rigorously develop some background ideas

needed to set up the Bellman function.

1.1. Motivation of the Bellman function. Let I be an interval and α± ∈ R+

such that α+ + α− = 1. These α± generate two subintervals I± such that |I±| =
α±|I| and I = I−∪ I+. We can continue this decomposition indefinitely as follows.

For any sequence {αn,m : 0 < αn,m < 1, 0 ≤ m < 2n, 0 < n <∞, αn,2k + αn,2k+1 =

1}, we can generate the sequence I := {In,m : 0 ≤ m < 2n, 0 < n < ∞}, where

In,m = I−n,m ∪ I+
n,m = In+1,2m+1 ∪ In+1,2m+1 and α− = αn+1,2m, α

+ = αn+1,2m+1.

Note that I0,0 = I.

For any J ∈ I we define the Haar function hJ := −
√

α+

α−|J |χJ− +
√

α−

α+|J |χJ+ . If

max{|In,m| : 0 ≤ m < 2n} → 0 as n → ∞ then {hJ}J∈I is an orthonormal basis

for L2
0(I) := {f ∈ L2(I) :

∫
I f = 0}. However, if we add one extra function then

Haar functions form an orthonormal basis in L2[0, 1] function. Fix I0 = [0, 1] and

I = D as the dyadic subintervals of I0. Let Dj = {I ∈ D : |I| = 2−j}. We use the

notation 〈f〉J to represent the average integral of f over the interval J ∈ D and

∆jf = 〈f〉Ij+1 −〈f〉Ij , where Ij ∈ Dj and Ij+1 ∈ Dj+1. For any f ∈ L1(I0) we have

∆jf =
∑

I∈Dj
(f, hI)hI . Then

∞∑
j=0

∆jf = lim
N→∞

〈f〉IN+1
− 〈f〉I0 (1.2)

By Lebesgue differentiation, the limit in (1.2) converges to f almost everywhere

as N → ∞. So any f ∈ Lp(I0) ⊂ L1(I0) can be decomposed in terms of the Haar
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system as

f = 〈f〉(I0)χ(I0) +
∑
I∈D

(f, hI)hI .

In terms of the expansion in the Haar system we define the martingale transform,

g of f, as

g := 〈g〉(I0)χ(I0) +
∑
I∈D

εI(f, hI)hI ,

where εI ∈ {±1}. Requiring that |(g, hJ)| = |(f, hJ)| for all J ∈ D is equivalent to

g being the martingale transform of f, for f, g ∈ Lp(I0).

Now we define the Bellman function as B(x1, x2, x3) :=

sup
f,g
{〈(g2 + τ2f2)

p
2 〉I : x1 = 〈f〉I , x2 = 〈g〉I , x3 = 〈|f |p〉I , |(f, hJ)| = |(g, hJ)|, ∀J ∈ D}

on the domain Ω = {x ∈ R3 : x3 ≥ 0, |x1|p ≤ x3}. The Bellman function is defined

in this way, since we would like to know the value of the supremum of

∥∥∥∥∥
(

g

τf

)∥∥∥∥∥
p

,

where g is the martingale transform of f . Note that |x1|p ≤ x3 is just Hölder’s

inequality. Even though the Bellman function is only being defined for real-valued

functions, we can vectorize it to work for complex-valued (and even Hilbert-valued)

functions. Slightly abusing the language, we can call 〈(|g|2+τ2|f |2)
p
2 〉

1
p

I a “quadratic

perturbation” of the martingale transform’s norm 〈|g|p〉
1
p

I .

Theorem 1. Let {dk}k≥1 be a complex martingale difference in Lp[0, 1], where

1 < p <∞, and {εk}k≥1 a sequence in {±1}. If τ ∈ [−1
2 ,

1
2 ] and n ∈ Z+ then∥∥∥∥∥

n∑
k=1

(
εk

τ

)
dk

∥∥∥∥∥
Lp([0,1],C2)

≤ ((p∗ − 1)2 + τ2)
1
2

∥∥∥∥∥
n∑
k=1

dk

∥∥∥∥∥
Lp([0,1],C)

,

where ((p∗ − 1)2 + τ2)
p
2 is sharp.

Note that when τ = 0 we get Burkholder’s famous result [7].

Now that we have the problem formalized, notice that B is independent of the

initial choice of I0 (or I as we will denote it from here on) and {αn,m}n,m, so we

return to having them arbitrary. The use of generalized dyadics will come into play

in Lemma 4. Finding B when p = 2 is easy, so we will do this first.

Proposition 2. If p = 2 then B(x) = x2
2 − x2

1 + (1 + τ2)x3.
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Proof. Since f ∈ L2(I) then f = 〈f〉IχI +
∑

J∈D (f, hJ)hJ implies

〈|f |2〉I =
1

|I|

∫
I
|f |2

= 〈f〉2I + 2〈f〉I
∑
J∈D

(f, hJ)
1

|I|

∫
I
hJ +

1

|I|

∫
I

∑
J,K∈D

(f, hJ)(f, hK)hJhK

= 〈f〉2I +
1

|I|
∑
J∈D
|(f, hJ)|2.

So ‖f‖22 = |I|x3 = |I|x2
1 +

∑
J∈D |(f, hJ)|2 and similarly

‖g‖22 = |I|x2
2 +

∑
J∈D
|(g, hJ)|2 = |I|x2

2 +
∑
J∈D
|(f, hJ)|2.

Now we can compute B explicitly, (when p = 2)

〈(g2 + τ2f2)
p
2 〉I = 〈|g|2〉I + τ2〈|f |2〉I = x2

2 + τ2x2
1 + (1 + τ2)

1

|I|
∑
J∈D
|(f, hJ)|2

= x2
2 + τ2x2

1 + (1 + τ2)(x3 − x2
1). �

1.2. Outline of Argument to Prove Main Result. Computing the Bellman

function, B, for p 6= 2, is much more difficult, so more machinery is needed. In

Section 1.3 we will derive properties of the Bellman function, the most notable of

which is concavity under certain conditions. Finding a B to satisfy the concavity

will amount to solving a partial differential equation, after adding an assumption.

This PDE has a solution on characteristics that is well known, so we just need to

find an explicit solution from this, using the Bellman function properties. How

the characteristics behave in the domain of definition for the Bellman function will

give us several cases to consider. In Section 2 we get the Bellman function for

1 < p < ∞ by putting together several cases. Once we have what we think is

the Bellman function, we need to show that it has the necessary smoothness and

that Assumption 7 was not too restrictive to give us the Bellman function. This is

covered in Section 3. Finally the main result is shown in Section 4.

1.3. Properties of the Bellman function. One of the properties we nearly

always have (or impose) for any Bellman function, is concavity (or convexity). It

is not true that B is globally concave, on all of Ω, but under certain conditions

it is concave. The needed condition is that g is the martingale transform of f, or

|x+
1 − x

−
1 | = |x

+
2 − x

−
2 | in terms of the variables in Ω.



6 NICHOLAS BOROS, PRABHU JANAKIRAMAN, AND ALEXANDER VOLBERG

Definition 3. We say that a function B is restrictively concave if x± ∈ Ω such

that x = α+x+ + α−x−, α+ + α− = 1 and if |x+
1 − x−1 | = |x+

2 − x−2 | implies

B(x) ≥ α+B(x+) + α−B(x−).

Proposition 4. B is restrictively concave in the x−variables.

Proof. Let ε > 0 be given and x± ∈ Ω. By the definition of B, there exists f±, g±

on I± such that 〈f〉I± = x±1 , 〈g〉I± = x±2 , 〈|f±|p〉I± = x±3 and

B(x±)− 〈[(g±)2 + τ2(f±)2]
p
2 〉I± ≤ ε

On I = I+ ∪ I− we define f and g as f := f+χI+ + f−χI− , g := g+χI+ + g−χI− .

So,

|x+
1 − x

−
1 | = |〈f〉I+ − 〈f〉I− | =

∣∣∣∣∣ 1

|I+|

∫
|I−|

f − 1

|I−|

∫
I−
f

∣∣∣∣∣
=

∣∣∣∣∣ 1

α+|I|

∫
|I−|

f − 1

α−|I|

∫
I−
f

∣∣∣∣∣ =
1

|I|

∣∣∣∣∫ f

(
1

α+
χI+ −

1

α−
χI−

)∣∣∣∣
=

√
|I|

α+α−

∣∣∣∣∫ fhI

∣∣∣∣ =:

√
|I|

α+α−
|(f, hI)| .

Similarly,|x+
2 −x

−
2 | =

√
|I|

α+α− |(g, hI)| . So our assumption |x+
1 −x

−
1 | = |x

+
2 −x

−
2 | is

equivalent to |(f, hI)| = |(g, hI)|. Since x1 = 〈f〉I , x2 = 〈g〉I and x3 = 〈|f |p〉I then

f and g are test functions and so

B(x) ≥ 〈(g2 + τ2f2)
p
2 〉I

= α+〈[(g+)2 + τ2(f+)2]
p
2 〉I+ + α−〈[(g−)2 + τ2(f−)2]

p
2 〉I−

≥ α+B(x+) + α−B(x−)− ε. �

At this point we do not quite have concavity of B on Ω since there is the re-

striction |x+
1 − x

−
1 | = |x

+
2 − x

−
2 | needed. To make this condition more manageable,

we will make a change of coordinates. Let y1 := x2+x1
2 , y2 := x2−x1

2 and y3 := x3.

We will also change notation for the Bellman function and corresponding domain

in the new variable y. Let M(y1, y2, y3) := B(x1, x2, x3) = B(y1 − y2, y1 + y2, y3).

Then the domain of definition forM will be Ξ := {y ∈ R3 : y3 ≥ 0, |y1−y2|p ≤ y3}.
If we consider x± ∈ Ω such that |x+

1 − x
−
1 | = |x

+
2 − x

−
2 |, then the corresponding

points y± ∈ Ξ satisfy either y+
1 = y−1 or y+

2 = y−2 . This implies that fixing y1 as
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y+
1 = y−1 or y2 as y+

2 = y−2 will make M concave with respect to y2, y3 under fixed

y1 and with respect to y1, y3 under y2 fixed.

Rather than using Proposition 4 to check the concavity of the Bellman function

we can just check it in the following way, assuming M is C2. Let j 6= i ∈ {1, 2}
and fix yi as y+

i = y−i . Then M as a function of yj , y3 is concave if(
Myjyj Myjy3

My3yj My3y3

)
≤ 0,

which is equivalent to

Myjyj ≤ 0,My3y3 ≤ 0, Dj =MyjyjMy3y3 −My3yjMyjy3 ≥ 0.

Proposition 5. (Restrictive Concavity in y−variables) Let j 6= i ∈ {1, 2} and fix

yi as y+
i = y−i . If Myjyj ≤ 0,My3y3 ≤ 0 and Dj = MyjyjMy3y3 − (Myjy3)2 ≥ 0

for j = 1 and j = 2 then M is restrictively concave.

The Bellman function, as it turns out, has many other nice properties.

Proposition 6. Suppose that M is C1(R3), then M has the following properties.

(i) Symmetry: M(y1, y2, y3) =M(y2, y1, y3) =M(−y1,−y2, y3)

(ii) Dirichlet boundary data: M(y1, y2, (y1− y2)p) = ((y1 + y2)2 + τ2(y1− y2)2)
p
2

(iii) Neumann conditions: My1 = My2 on y1 = y2 and My1 = −My2 on

y1 = −y2

(iv) Homogeneity: M(ry1, ry2, r
py3) = rpM(y1, y2, y3), ∀r > 0

(v) Homogeneity relation: y1My1 + y2My2 + py3My3 = pM

Proof. (i) Note that we get B(x1, x2, x3) = B(−x1, x2, x3) = B(x1,−x2, x3) by

considering test functions f̃ = −f and g̃ = −g. Change coordinates from x to y

and the result follows.

(ii) On the boundary {x3 = |x1|p} of Ω we see that

1

|I|

∫
I
|f |p = 〈|f |p〉I = x3 = |x1|p = |〈f〉I |p =

∣∣∣∣ 1

|I|

∫
I
f

∣∣∣∣p
is only possible if f ≡ const. (i.e. f = x1). But, |(f, hJ)| = |(g, hJ)| for all

J ∈ I, which implies that g ≡ const. (i.e. g = x2). Then B(x1, x2, |x1|p) =

〈(g2 + τ2f2)
p
2 〉I = (x2

2 + τ2x2
1)

p
2 . Changing coordinates gives the result.

(iii) This follows from from (i).

(iv) Consider the test functions f̃ = rf, g̃ = rg

(v) Differentiate (iv) with respect to r and evaluate it at r = 1. �



8 NICHOLAS BOROS, PRABHU JANAKIRAMAN, AND ALEXANDER VOLBERG

Now that we have all of the properties of the Bellman function we will turn our

attention to finding it. Proposition 5 gives us a partial differential inequality to

solve, which can be quite difficult. We can get a PDE instead to work with, by

assuming that (
Myjyj Myjy3

My3yj My3y3

)
is degenerate (i.e. Dj =MyjyjMy3y3−(My3yj )

2 = 0). The PDE that we now have

is the well known Monge–Ampère equation which has a solution. Let us make it

clear that we have added an assumption.

Assumption 7. If we fix yi, then(
Myjyj Myjy3

My3yj My3y3

)
is degenerate, where i 6= j ∈ {1, 2}.

Adding this assumption comes with a price. Any function that we construct

satisfying all properties of the Bellman function (we call such functions Bellman

function candidates), must still be shown to equal the Bellman function.

Proposition 8. For j = 1 or 2, MyjyjMy3y3 − (My3yj )
2 = 0 has the solution

M(y) = yjtj + y3t3 + t0 on the characteristics yjdtj + y3dt3 + dt0 = 0, which are

straight lines in the yj × y3 plane. Furthermore, t0, tj , t3 are constant on charac-

teristics with the property Myj = tj ,My3 = t3.

This is a result of Pogorelov, see [18], [19]. Now that we have a solution M to

the Monge–Ampère, we need get rid of t0, tj , t3 so that we have an explicit form

of M, without the characteristics. We note that a solution to the Monge–Ampère

is not necessarily the Bellman function. It must satisfy the restrictive concavity

of Proposition 5, be C1-smooth, and satisfy the properties of Proposition 6. The

restrictive concavity property is one of the key deciding factors of whether or not

we have a Bellman function candidate in many cases. Even if the Monge–Ampère

solution satisfies all of those conditions, it must still be shown to be equal to the

Bellman function, because we added an additional assumption (Assumption 7) to

get the Monge–Ampère solution. This will be considered rigorously in Section 3,

after we obtain a solution to the Monge–Ampère equation, with the appropriate

Bellman function properties (our candidate). So from this point on we will use M
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and B to denote solutions to the Monge–Ampère equation, i.e. Bellman function

candidates, and M and B to denote the true Bellman function.

2. Finding the Monge–Ampère solution which is the Bellman function

candidate

In this section we impose some of the Bellman function properties on the Monge–

Ampère solution to get a Bellman function candidate. We omit the details only

giving a rough outline for how to do this. For a detailed long computation of the

Bellman function, see [1].

Due to the symmetry property of M, from Proposition 6, we only need to con-

sider the domain Ξ+ := {y : −y1 ≤ y2 ≤ y1, y3 ≥ 0, (y1 − y2)p ≤ y3} rather than Ξ.

Since the characteristics are straight lines, then (for at least part of the domain)

one end of each line must be on the boundary {y : (y1 − y2)p = y3}. Let U denote

the point at which the characteristic touches the boundary. Furthermore, there are

only four possibilities for the behavior of the characteristics in the plane.

(1) The characteristic goes from U to {y : y1 = y2}
(2) The characteristic goes from U to to infinity, running parallel to the y3-axis

(3) The characteristic goes from U to {y : y1 = −y2}
(4) The characteristic goes from U to {y : (y1 − y2)p = y3}.
Note that these cases may not entirely describe how the characteristics fill the

domain. For example if one is able to find a Bellman function candidate in Case (4)

with y1 fixed, then there must be another set of characteristics to fill the remaining

part of the domain, which may not be one of the remaining cases listed here (for

example take horizontal lines in Figure 1). So these cases should be thought of as

a starting point. However, it turns out that Cases (1), (2) and (3) are enough to

build the Bellman function for τ−values small enough.

To find a Bellman function candidate we must first fix a variable (y1 or y2) and a

case for the characteristics. Then we use the Bellman function properties to get rid

of the characteristics. If the Monge–Ampère solution satisfies restrictive concavity,

then it is a Bellman function candidate. Checking the restrictive concavity is quite

difficult in many of the cases, since it amounts to doing second derivative estimates

for an implicitly defined function. Let us now find our Bellman function candidate.

First of all, fix y1. Then the Monge–Ampère solution from Case (1) is only

valid on part of the domain Ξ+. Furthermore, restrictive concavity is only valid for

2 < p <∞. Turning to Case (2) we obtain similar results. Restrictive concavity is
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only valid on part of the domain Ξ+ for Case (2). But, as luck would have it, the

two partial Bellman candidates are the missing halves of one another. So we can

glue together the partial solutions from Cases (1) and (2) to get a whole solution

in Ξ+. The characteristics for this solution can be seen in Figure 1.

-

6

y2−y1 p−2
p y1

y1

y3

�
�
�
�
�
��

Figure 1. Characteristics of Bellman function candidate, for 2 <

p <∞.

Proposition 9. For 2 < p <∞, |τ | ≤ 1 and γ = 1−τ2
1+τ2

, the Monge–Ampère solution

given by the following is a Bellman function candidate.

M(y) = (1 + τ2)
p
2 [y2

1 + 2γy1y2 + y2
2]

p
2 + ((p− 1)2 + τ2)

p
2 [y3 − (y1 − y2)p]

when −y1 < y2 ≤ p−2
p y1 and is given implicitly by

G(y1 +y2, y1−y2) = y3G(
√
ω2 − τ2, 1) when p−2

p y1 ≤ y2 < y1, where G(z1, z2) =

(z1 + z2)p−1[z1− (p− 1)z2] and ω =
(
M(y)
y3

) 1
p
. This solution satisfies all properties

of the Bellman function, including restrictive concavity.

Keeping y1 fixed we turn our attention to Case (3). The Monge–Ampère solution

from Case (3) only gives a solution on part of the domain Ξ+. Moreover, restrictive

concavity is only valid for 1 < p < 2. Just as for the dual p−values, Case (2) only

provides a partial solution (due to restrictive concavity only being valid on part of

the domain). So we can glue the two partial solutions together to get a Bellman

function candidate for 1 < p < 2 and |τ | ≤ 1
2 . The τ−values had to be restricted

slightly more than for 2 < p <∞.

Proposition 10. Let 1 < p < 2. If |τ | ≤ 1
2 and γ = 1−τ2

1+τ2
, then the Monge–Ampère

solution given by the following is a Bellman function candidate.
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-

6

y2−y1 2−p
p y1

y1

y3

Figure 2. Characteristics of Bellman function candidate, for 1 <

p < 2.

M(y) = (1 + τ2)
p
2 [y2

1 + 2γy1y2 + y2
2]

p
2 +

(
1

(p−1)2
+ τ2

) p
2

[y3 − (y1 − y2)p] when
2−p
p y1 ≤ y2 < y1 and is given implicitly by

G(y1−y2, y1+y2) = y3G(1,
√
ω2 − τ2) when −y1 < y2 ≤ 2−p

p y1, where G(z1, z2) =

(z1 + z2)p−1[z1 − (p − 1)z2] and ω =
(
M(y)
y3

) 1
p
. This function satisfies all of the

properties of the Bellman function.

Most of the remaining cases do not yield a Bellman function candidate. If we

fix y2 then the Monge–Ampère solution from Cases (1) and (3) do not satisfy the

restrictive concavity needed to be a Bellman function candidate. Propositions 9

and 10 are direct computations of these facts, see details in [1]. Case (2) yields the

same partial solution, if we first fix y1 or y2, since restrictive concavity is only valid

on part of the domain. All that remains is Case (4). However, we do not know

whether or not Case (4) gives a Bellman function candidate. For τ = 0, it was

shown in [21] that Case (4) does not produce a Bellman function candidate, since

otherwise some simple extremal functions give a contradiction to linearity of the

Monge–Ampère solution on characteristics. However, for τ 6= 0 it is much more

difficult to show this. Case (4) could give a solution throughout Ξ+ or could yield

a partial solution that would work well with the characteristics from Case (21).

But, we believe that Case (4) should not give us a Bellman candidate and actually

it does not matter now, we will proceed in showing that our Bellman function

candidate is actually the Bellman function now. This would have to be checked

anyway and we got lucky that this is true without messing with Case (4).
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3. The Monge–Ampère solution is the Bellman function

We will now show that the Monge–Ampère solution obtained in Proposition 9

and 10 is actually the Bellman function. To this end, let us revert back to the

x−variables. We will denote the Bellman function candidate as Bτ and use Bτ
to denote the true Bellman function. Extending the function G to Uτ makes it

possible to define the solution in terms of a single relation.

Definition 11. Denote v(x, y) := vp,τ (x, y) = (τ2|x|2+|y|2)
p
2−((p∗−1)2+τ2)

p
2 |x|p,

u(x, y) := up,τ (x, y) = p(1− 1
p∗)

p−1
(

1 + τ2

(p∗−1)2

) p−2
2

(|x|+ |y|)p−1[|y| − (p∗ − 1)|x|]
and

U(x, y) := Up,τ (x, y) =

{
v(x, y) : |y| ≥ (p∗ − 1)|x|
u(x, y) : |y| ≤ (p∗ − 1)|x|

for 1 < p < 2. The two pieces of U are interchanged for 2 ≤ p <∞.

Proposition 12. For 1 < p < 2 and |τ | ≤ 1
2 or 2 ≤ p < ∞ and |τ | ≤ 1 the

Bellman function candidate is the unique positive solution given by

U(x1, x2) = U

(
x

1
p

3 ,

√
B

2
p
τ − τ2x

2
p

3

)
.

Moreover, U is C1−smooth on Ω.

Proof. First consider 2 < p <∞. It is clear that

U(x1, x2) = U

(
x

1
p

3 ,

√
B

2
p
τ − τ2x

2
p

3

)
, (3.1)

by comparing the solution obtained in Proposition 9 and using the symmetry prop-

erty in Proposition 6. The constant αp,τ = p(1 − 1
p∗ )p−1

(
1 + τ2

(p∗−1)2

) p−2
2

was de-

termined to make Ux = Uy at |y| = (p∗ − 1)|x|. The partial derivatives are given

by,

ux = αp,τ (p− 1)x′(|x|+ |y|)p−2(|y| − (p∗ − 1)|x|)− αp,τ (p∗ − 1)x′(|x|+ |y|)p−1,

vx = pτ2x(τ2|x|2 + |y|2)
p−2
2 − px′((p∗ − 1)2 + τ2)

p
2 |x|p−1,

uy = αp,τ (p− 1)y′(|x|+ |y|)p−2(|y| − (p∗ − 1)|x|) + αp,τy
′(|x|+ |y|)p−1,

vy = py(τ2|x|2 + |y|2)
p−2
2 ,
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where x′ = x
|x| and y′ = y

|y| . U is C1−smooth except possibly at gluing and sym-

metry lines. It is easy to verify that ux is continuous at {x = 0}, Ux and Uy are

continuous at {|y| = (p∗− 1)|x|} and vy is continuous at {y = 0}. This proves that

U is C1−smooth on Ω.

Observe that Uy > 0 for y 6= 0 and Ux < 0 for x 6= 0. This is enough to show that

Bτ is the unique positive solution to (3.1). Indeed, if x ∈ Ω such that |x1| = x
1
p

3 ,

then

√
B

2
p
τ − τ2x

2
p

3 = |x2| by the Dirichlet boundary conditions. This gives us (3.1)

uniquely at Bτ (x). Fix x1, such that |x1| < x
1
p

3 , then U

(
x

1
p

3 ,

√
B

2
p
τ − τ2x

2
p

3

)
<

U

(
x1,

√
B

2
p
τ − τ2x

2
p

3

)
. Since x1 is fixed, then

√
B

2
p
τ − τ2x

2
p

3 > |x2|, so U
(
x1,

√
B

2
p
τ − τ2x

2
p

3

)
strictly decreases to U(x1, x2), as

√
B

2
p
τ − τ2x

2
p

3 decreases to |x2|, giving us a unique

Bτ (x) for which (3.1) holds.

Now consider 1 < p < 2. U is C1−smooth on Ω, since vx is continuous at {x = 0},
uy is continuous at {y = 0} and Ux and Uy are continuous at {|y| = (p∗−1)|x|}. This

is easily verified since the partial derivatives are computed above (just switch the

two pieces of each function). Observe that for x 6= 0 and y 6= 0, Ux < 0 and for y 6=

0, Uy > 0. Then the argument above showing U(x1, x2) = U

(
x

1
p

3 ,

√
B

2
p
τ − τ2x

2
p

3

)
uniquely determines Bτ also holds for this range of p−values as well, except maybe

at x1 = x2 = 0. Suppose U(0, 0) = U

(
x

1
p

3 ,

√
B

2
p
τ − τ2x

2
p

3

)
, then Bτ (x) = ((p∗ −

1)2 + τ2)
p
2x3. So Bτ (x) is uniquely determined by the fixed x−value. �

Corollary 13. Bτ is continuous in Ω.

6
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x2 = (p∗ − 1)x1

x2 = −(p∗ − 1)x1

x2

x1

E

E

E

E

II

II

Figure 3. Location of Implicit (I) and Explicit (E) part of Bτ for

2 ≤ p <∞.



14 NICHOLAS BOROS, PRABHU JANAKIRAMAN, AND ALEXANDER VOLBERG

Proof. We only consider 2 < p < ∞ as the dual range is handled identically. By

Proposition 12, we have that Bτ is the unique positive solution to 3.1. Since this

is true for all |τ | ≤ 1, then B0 =

(
B

2
p
τ − τ2x

2
p

3

) p
2

on |x2| ≥ (p∗ − 1)|x1|, since

Up,τ =
(

1 + τ2

(p∗−1)2

) p−2
2
Up,0. Equivalently, we have

Bτ =

(
B

2
p

0 + τ2x
2
p

3

) p
2

. (3.2)

Since B0 was shown to be continuous in [21] (pg. 26) then Bτ is also continuous

on |x2| ≥ (p∗ − 1)|x1|, using the relation. This takes care of the implicit part of

Bτ . The explicit part of Bτ is clearly continuous on |x2| ≤ (p∗ − 1)|x1|. �

Lemma 14. Let 1 < p <∞. Then, Bτ
∣∣
L

is C1−smooth on Ω, where L is any line

in Ω.

Proof. Since Bτ
∣∣
L

is C2−smooth on Ω+, all that remains to be checked is the

smoothness at the gluing and symmetry lines, i.e. at {x1 = 0}, {x2 = 0} and

{|x2| = (p∗ − 1)|x1|}. Let L = L(t), t ∈ R, be any line in Ω passing through any

of the planes in question, such that L(0) is on the plane. Now plug L(t) into (3.1)

and differentiate with respect to t. Let t → 0+ and t → 0− and equate the two

relations. This gives

d

dt
Bτ (L(t))

∣∣
t=0−

=
d

dt
Bτ (L(t))

∣∣
t=0+

. �

Proposition 15. Let 1 < p < 2 and |τ | ≤ 1
2 or 2 ≤ p < ∞ and |τ | ≤ 1. Then Bτ

is restrictively concave.

Proof. Recall that Propositions 9 and 10, together with the symmetry property of

Bτ , establish this result everywhere, except at {x1 = 0}, {x2 = 0} and {|x2| =

(p∗ − 1)|x1|}. Let f(t) = Bτ
∣∣
L(t)

, where L is any line in Ω, such that L(0) ∈ {x1 =

0}, {x2 = 0} or {|x2| = (p∗ − 1)|x1|}. Since f ′′ < 0 for t < 0 and t > 0 and f is

C1−smooth (by Lemma 14), then f is concave. �

Proposition 16. Let 1 < p < ∞. If a function B̃ on Ω has restrictive concavity

and B̃τ (x1, x2, |x1|p) ≥ (τ2x2
1 + x2

2)
p
2 , then B̃τ ≥ Bτ . In particular, Bτ ≥ Bτ .

Proof. This was proven in [21] for B0 (Lemma 2 on page 29). The same proof will

apply here to Bτ . �

Proposition 17. For 1 < p <∞, Bτ ≤ Bτ .
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Proof. For 1 < p < 2 there is a direct proof, which will be discussed first. By

(3.2) we know that B0 =

(
B

2
p
τ − τ2x

2
p

3

) p
2

on {|x2| ≤ (p∗ − 1)|x1|}. Consider,

B̃0 =

(
B

2
p
τ − τ2x

2
p

3

) p
2

. It suffices to show that B0 ≤ B̃0. But, Burkholder showed

that B0 = B0, so without the supremum’s we can reduce to simply showing

〈|g|p〉
2
p

I + τ2〈|f |p〉
2
p

I ≤ 〈(τ
2|f |2 + |g|2)

p
2 〉I .

Apply Minkowski’s inequality:
∥∥∫

I (A,B)
∥∥
l
2
p
≤
∫
I ‖(A,B)‖

l
2
p
. Choosing A = |g|p

and |τf |p proves the result. So we have shown that Bτ ≤ Bτ on {|x2| ≤ (p∗−1)|x1|}.
Now we would like to show thatBτ ≤ Bτ on {|x2| ≥ (p∗−1)|x1|}. LetH1(x1, x2, x3) =

Bτ (x1, x2, x3)−Bτ (0, 0, 1)x3. Lemma 21, in the next section, proves thatH1(x1, x2, ·)
is an increasing function starting at H1(x1, x2, |x1|p) = vτ (x1, x2) and increas-

ing to Ũp,τ (x, y) := supt≥|x|p{Bτ (x, y, t) − Bτ (0, 0, 1)t}. The same proof works for

H2(x1, x2, x3) = Bτ (x1, x2, x3)− Bτ (0, 0, 1)x3. So

H2(x1, x2, x3) ≥ vτ (x1, x2) = Bτ (x1, x2, x3)−Bτ (0, 0, 1)x3.

Since Bτ (0, 0, 1) ≤ Bτ (0, 0, 1), then Bτ ≤ Bτ on {|x2| ≥ (p∗ − 1)|x1|}.
Now we consider 2 < p < ∞. Let ε > 0 be arbitrarily small and consider the

following extremal functions

f(x) =


−c : 1 < x < ε

γf
(
t−ε

1−2ε

)
: ε < x < 1− ε

c : 1− ε < x < 1,

g(x) =


d− : 1 < x < ε

γg
(
t−ε

1−2ε

)
: ε < x < 1− ε

d+ : 1− ε < x < 1,

where c, d± and γ are defined so that f and g are a pair of test functions at

(0, x2, x3). We can use f and g to show, just as in [21] (Lemma 3, pg. 30), that

Bτ (0, x2, x3) ≤ Bτ (0, x2, x3).

Now we need to take care of the estimate when x1 6= 0. Making a change of

coordinates from x to y we only need to consider y ∈ Ξ+, by the symmetry property

of the Bellman function and Bellman function candidate. So Mτ (y1, y1, y3) ≤
Mτ (y1, y1, y3). The Dirichlet boundary conditions give that M(y1, y2, (y1−y2)p) =

M(y1, y2, (y1−y2)p). On any characteristic in {p−2
p y1 ≤ y2 ≤ y1}, see Figure 1, Mτ

is linear (since it is the Monge–Ampère solution) andMτ is concave (by Proposition
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4). Therefore, Mτ (y1, y2, y3) ≤Mτ (y1, y2, y3) on {p−2
p y1 ≤ y2 ≤ y1}. On {p−2

p y1 ≤
y2 ≤ y1}, we can use the same proof as for 1 < p < 2, to get Mτ (y1, y2, y3) ≤
Mτ (y1, y2, y3) on {−y1 ≤ y2 ≤ p−2

p y1}. �

Now that we have shown B = B we will derive another surprising relationship.

Definition 18. We define Bl = Bl(x1, x2, x3) as the least restrictively concave

majorant of (x2
2 + τ2x2

1)
p
2 in Ω.

Proposition 19. For 1 < p <∞, B = B = Bl.

Proof. First we will show B ≥ Bl. By Minkowski’s inequality,

B(x1, x2, x3) = B(x1, x2, x3) ≥
∫

(|g|2 + τ2|f |2)
p
2 =

∫ ∥∥∥∥∥
(
g

τf

)∥∥∥∥∥
p

l2

≥

∥∥∥∥∥
∫ (

g

τf

)∥∥∥∥∥
p

l2

= (|〈g〉|2 + τ2|〈f〉|2)
p
2 = (x2

2 + τ2x2
1)

p
2 ,

proving the estimate.

Conversely, one can show that B ≤ Bl just as B ≤ B was shown in Proposition

16 (simply apply the same argument to Bl using the restrictive concavity of this

function). �

4. Proving the main result

Now that we have the Bellman function, the main result can be proven without

too much difficulty. But first, we will find another relationship between U and v.

Quite surprisingly, U is the least zigzag-biconcave majorant of v.

Definition 20. We denote any function of (x, y) as zigzag-biconcave if it is bicon-

cave in (x+ y, x− y).

Lemma 21. Let 1 < p < ∞ and Ũp,τ (x, y) = supt≥|x|p{Bτ (x, y, t) − Bτ (0, 0, 1)t}.
Fix (x, y). The function H(x, y, t) = Bτ (x, y, t)−Bτ (0, 0, 1)t is increasing in t from

H(x, y, |x|p) = v(x, y) := (τ2x2 + y2)
p
2 − ((p∗ − 1)2 + τ2)

p
2 |x|p to Ũp,τ (x, y).

Proof. Recall that Bτ is continuous in Ω and for (x, y) fixed, Bτ (x, y, ·) is con-

cave. Then H(x, y, ·) is also concave. Since Ũp,τ (x, y) = supt≥|x|p{Bτ (x, y, t) −
Bτ (0, 0, 1)t}, then H(x, y, ·) either increases to Ũp,τ (x, y), or there exists t0 such

that H(x, y, t0) = Ũp,τ (x, y) and H is decreasing for t > t0. If H is decreasing for
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t > t0, then H −→ −∞ as t −→ ∞ by concavity. Then there exists ε > 0 and

t′ > t0 such that H(x, y, t′) < εt′. So we have, lim supt→∞
H(x,y,t)

t < −ε. But,

lim
t→∞

H(x, y, t)

t
= lim

t→∞

[
Bτ

(
x

t
1
p

,
y

t
1
p

, 1

)
−Bτ (0, 0, 1)

]
= 0,

by continuity ofBτ at (0, 0, 1). This gives us a contradiction. Therefore, H(x, y, t) ≥
−εt, for all t and all ε > 0, i.e. H is non-negative concave function on [|x|p,∞).

So H(x, y, ·) is increasing and H(x, y, |x|p) = v(x, y) by the Dirichlet boundary

conditions of Bτ in Proposition 6. �

Proposition 22. For 1 < p <∞, Up,τ (x, y) = Ũp,τ (x, y).

Proof. Suppose 2 ≤ p <∞ and |y| ≥ (p− 1)|x|. Then

Ũ0(x, y) = lim
t→∞

(B0(x, y, t)−B0(0, 0, 1)t)

= lim
t→∞

B

(
x

x
1
p
, y

x
1
p
, 1

)
1/t

=
d

du
B(u

1
px, u

1
p y, 1)

∣∣∣∣
u=0

.

Now we repeat the same steps and obtain

Ũτ (x, y) = lim
t→∞

(Bτ (x, y, t)−Bτ (0, 0, 1)t)

=
d

du

[(
B

2
p

0 (u
1
px, u

1
p y, 1) + τ2

) p
2

] ∣∣∣∣
u=0

=

[(
B

2
p

0 (u
1
px, u

1
p y, 1) + τ2

)p−2
2

B
2−p
p

0 (u
1
px, u

1
p y, 1)

d

du
B0(u

1
px, u

1
p y, 1)

]∣∣∣∣
u=0

=

(
1 +

τ2

(p− 1)2

) p−2
2

Ũ0(x, y)

=

(
1 +

τ2

(p− 1)2

) p−2
2

U0(x, y),

where the last equality is by [7]. Therefore, Ũτ (x, y) = Uτ (x, y).

Now suppose |y| ≤ (p − 1)|x|. Looking at the explicit form of Bτ in the region,

note that Bτ (x, y, ·) is linear. So Ũτ (x, y) = supt≥|x|p{Bτ (x, y, t) − Bτ (0, 0, 1)t} =

supt≥|x|p{Bτ (x, y, 0)} = vτ (x, y) = Uτ (x, y).

We can apply the same proof to show that Ũτ (x, y) = Uτ (x, y) for 1 < p < 2. �
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Proposition 23. For τ ∈
[
−1

2 ,
1
2

]
and 1 < p < 2 or τ ∈ [−1, 1] and 2 ≤ p <∞, U

is the least zigzag-biconcave majorant of v(x, y) = (y2+τ2x2)
p
2−((p∗−1)2+τ2)

p
2 |x|p.

Proof. Recall the following facts just proved in Lemma 21 and Proposition 22:

U(x, y) = sup
t:(x,y,t)∈Ω

{B(x, y, t)− B(0, 0, 1)t} ≥ v(x, y) = (y2 + τ2x2)
p
2 − Cpt,

where Cp = ((p∗ − 1)2 + τ2)
p
2 .

Suppose that w is a zigzag-biconcave function such that v ≤ w ≤ U. Then

W (x, y, t) := w(x, y)+Cpt has restrictive concavity and W (x, y, t) ≥ v(x, y)+Cpt =

(y2 + τ2x2)
p
2 . Therefore, by Proposition 16, we have W ≥ B. So we have

w(x, y) = sup
t:(x,y,t)∈Ω

{W (x, y, t)− Cpt}

≥ sup
t:(x,y,t)∈Ω

{B(x, y, t)− Cpt} = U(x, y) �

We now have enough results to easily prove the main result, in terms of the Haar

expansion of a R−valued Lp function.

Theorem 24. Let 1 < p < 2, |τ | ≤ 1
2 or 2 ≤ p < ∞, |τ | ≤ 1. Denote I = [0, 1]

and let f, g : [0, 1] → R. If |〈g〉I | ≤ (p∗ − 1)|〈f〉I | and |(f, hJ)| = |(g, hJ)| for all

J ∈ D,then 〈(τ2|f |2 + |g|2)
p
2 〉I ≤ ((p∗ − 1)2 + τ2)

p
2 〈|f |p〉I , where ((p∗ − 1)2 + τ2) is

the sharp constant and p∗ − 1 = max
{
p− 1, 1

p−1

}
.

Proof. Suppose 2 ≤ p < ∞ and |τ | ≤ 1. The proof relies on the fact that by

Proposition 23

U(x, y) = sup
t≥|x|p

{B(x, y, t)−B(0, 0, 1)t}.

and by Proposition 19, B = B. Since |y| ≤ (p∗ − 1)|x| on Ω, then

U(x, y) = v(x, y) = (|y|2 + τ2|x|2)
p
2 − ((p∗ − 1)2 + τ2)

p
2 |x|p ≤ 0.

Then,

sup
t>|x|p

|y|≤(p∗−1)|x|

{B(x, y, t)−B(0, 0, 1)t} ≤ 0.

But, U(0, 0) = 0, therefore

sup
t>|x|p

|y|≤(p∗−1)|x|

B(x, y, t)

t
= B(0, 0, 1) = ((p∗ − 1)2 + τ2)

p
2 . (4.1)
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Observing the relationship, B = B, is enough to get the desired result.

For 1 < p < 2, |τ | ≤ 1
2 and |y| ≤ (p∗ − 1)|x|,

U(x, y) = p

(
1− 1

p∗

)(
1 +

τ2

(p∗ − 1)2

) p−2
2

(|x|+ |y|)p−1[|y| − (p∗ − 1)|x|] ≤ 0,

so we have (4.1) by the same reasoning as for 2 ≤ p <∞. �

Remark 25. Note that Minkowski’s inequality together with Burkholder’s original

result gives the estimate from above, 〈(|g|2 + τ2|f |2)
p
2 〉

p
2
I ≤ ((p∗− 1)2 + τ2)

p
2 〈|f |p〉I ,

for 2 ≤ p <∞ and any τ ∈ R.

Indeed, if f ∈ Lp[0, 1] and g is the corresponding martingale transform then

Minkowski’s inequality gives,

‖g2 + τ2f2‖
p
2

L
p
2
≤ (‖g2‖

L
p
2

+ ‖τ2f2‖
L

p
2
)
p
2 = (‖g‖2Lp + ‖τf‖2Lp)

p
2

≤ ‖f‖pLp((p∗ − 1)2 + τ2)
p
2 .

This is very surprising in the sense that the “trivial” constant ((p∗−1)2 +τ2)
p
2 is

actually the sharp constant if τ is small, but it only gives the estimate from above

when 2 ≤ p <∞.
Now we will prove the main result for Hilbert-valued martingales. The same

ideas can be used to extend the previous result to Hilbert-valued Lp−functions as

well. Let H be a separable Hilbert space with ‖ · ‖H as the induced norm.

Theorem 26. Let 1 < p <∞, (W,F ,P) be a probability space and {fk}k∈Z, {gk}k∈Z :

W → H be two H−valued martingales with the same filtration {Fk}k∈Z. Denote

dk = fk − fk−1, d0 = f0, ek = gk − gk−1, e0 = g0 as the associated martingale dif-

ferences. If ‖ek(ω)‖H ≤ ‖dk(ω)‖H, for all ω ∈ W and all k ≥ 0 and τ ∈ [−1
2 ,

1
2 ]

then∥∥∥∥∥
(

n∑
k=0

ek, τ

n∑
k=0

dk

)∥∥∥∥∥
Lp([0,1],H2)

≤ ((p∗ − 1)2 + τ2)
p
2

∥∥∥∥∥
n∑
k=0

dk

∥∥∥∥∥
Lp([0,1],H)

,

where ((p∗− 1)2 + τ2)
p
2 is the best possible constant and p∗− 1 = max{p− 1, 1

p−1}.
For 2 < p <∞, the result is also true, with the best possible constant, if |τ | ≤ 1.

In the theorem, “best possible” constant means that if Cp,τ < ((p∗− 1)2 + τ2)
1
2 ,

then for some probability space (W,G, P ) and a filtration F , there exists H−valued

martingales {f}k and {g}k, such that

‖(gk, τfk)‖Lp([0,1],H2) > Cp,τ ‖fk‖Lp([0,1],H) .
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Proof. We will prove the result for 2 ≤ p < ∞, since the result for 1 < p < 2 is

similar. Replace | · | with ‖ · ‖H, in Up,τ . Let fn =
∑n

k=0 dk and gn =
∑n

k=0 ek.

Recall that U := Up,τ is the least zigzag-biconcave majorant of v. As in [8] (pages

77-79),

Up,τ (x+ h, y + k) ≤ Up,τ (x, y) + <(∂xUp,τ , h) + <(∂yUp,τ , k), (4.2)

for all x, y, h, k ∈ H, such that |k| ≤ |h| and ‖x + ht‖H‖x + kt‖H > 0. The re-

sult in (4.2) follows from the zigzag-biconcavity and implies that E[U(fk, gk)] is a

supermartingale. Lemma 21 gives us that v(fn, gn) ≤ U(fn, gn). Therefore,

E[v(fn, gn)] ≤ E[U(fn, gn)] ≤ E[U(fn−1, gn−1)] ≤ · · · ≤ E[U(d0, e0)].

But, E[U(d0, e0)] ≤ 0 in both pieces of U since 2 − p∗ ≤ 0 and ‖e0‖H ≤ ‖d0‖H.
Thus, E[v(fn, gn)] ≤ 0. The constant, in the estimate, is best possible, since it was

attained in Theorem 24. �

Remark 27. For 1 < p < 2 and |τ | > 1
2 , the “trivial” constant, ((p∗− 1)2 + τ2)

p
2 , in

the main result is no longer sharp because of a “phase transition”. To give a sense

of why this is true one can show that for 1 < p < 2 fixed, the constant is no longer

sharp for τ sufficiently large.

Let us construct such a function f to do this. First of all, fn ∈ Lp[0, 1] will be

chosen so that fn 6= 0 a.e. Let Cp = (p∗ − 1). Note that

∫
(|gn|2 + τ2|fn|2)

p
2 = |τ |p

∫
|fn|p

(
1 +

1

|τ |2
|gn|2

|fn|2

) p
2

= |τ |p
∫
|fn|p +

p

2|τ |2−p

∫
|gn|2

|fn|2−p

+
p

2

(p
2
− 1
) 1

2|τ |4−p

∫
|gn|4

|fn|4−p

(
1

1 + θn(x, τ)

)2− p
2

=: |τ |p
∫
|fn|p +A+B
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((p∗ − 1)2 + τ2)
p
2

∫
|fn|p = |τ |p

(
1 +

C2
p

|τ |2

) p
2 ∫
|fn|p

= |τ |p
∫
|fn|p +

pC2
p

2|τ |2−p

∫
|fn|p

+
p

2

(p
2
− 1
) C4

p

2|τ |4−p

∫
|fn|p

(
1

1 + θ̃n

)2− p
2

=: |τ |p
∫
|fn|p + C +D,

where θn(x, τ), θ̃n ≥ 0.

Choose fn = χ[ 1
8
, 1
4

)∪[ 5
8
, 3
4

) − χ[ 3
8
, 1
2

)∪[ 7
8
,1) − εnχ[0, 1

8
)∪[ 1

2
, 5
8

) + εnχ[ 1
4
, 3
8

)∪[ 3
4
, 7
8

), where

εn > 0 is small. On the sets where |fn| = εn, we can choose the martingale

transform gn of fn not small. Indeed, without loss of generality choose x ∈ [0, 1
8)

and denote J1 = [0, 1
4). Then

fn(x) =
∑
I:I⊃J1

(f, hI)hI(x) = −εn

Define a martingale transform gn as

gn(x) =
∑
I:I)J1

(f, hI)hI(x)− (f, hJ1)hJ1(x).

Then

fn(x)− gn(x) = 2(fn, hJ1)hJ1(x) = (2− εn)
√
|J1|

(
− 1√
|J1|

)
Therefore, fn(x) = −εn, yet its martingale transform gn(x) = 2− 2εn, for x ∈ J1.

The same can be done for other intervals of smallness of fn. Note that
∫
|gn|2 =∫

|fn|2 →
∫
|f |2 = 1

2 , if we choose εn → 0. So
∫
|gn|2 ≈ 1

2 , for n sufficiently large.

To show that
∫

(g2 + τ2f2)
p
2 > ((p∗−1)2 +τ2)

p
2

∫
|f |p it suffices to show A+B >

C+D. As D ≤ 0 it is enough to prove A+B−C > 0. Let A′ = τ2−pA, C ′ = τ2−pC,

B′ = τ4−pB. Regardless of the choice of τ we have A′ > 2C ′ if n is chosen

sufficiently large. In fact looking at A′ we see that it is bigger than the integral,

where integrand has numerator close to 2 and denominator equal εn. On the other

hand C ′ involves just an integral with uniformly (in n) bounded integrand. Then

we fix n, of course |B′| is very large, but we notice that choosing τ to be very large

makes the following inequality true:

A+B − C =
1

|τ |2−p
[(A′ − C ′)− 1

|τ |2
|B′|] > 0 .
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This completes the example.
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