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ABSTRACT

THE LP -OPERATOR NORM OF A QUADRATIC PERTURBATION OF
THE REAL PART OF THE AHLFORS–BEURLING OPERATOR

By

Nicholas Boros

Given a sequence of martingale differences, Burkholder found the sharp constant for the

Lp-norm of the corresponding martingale transform. We are able to determine the sharp Lp-

norm of small “quadratic perturbations” of the martingale transform in Lp. By “quadratic

perturbation” of the martingale transform we mean the Lp norm of the square root of the

squares of the martingale transform and the original martingale (with small constant). The

problem of perturbation of martingale transform appears naturally if one wants to estimate

the linear combination of Riesz transforms (as, for example, in the case of Ahlfors–Beurling

operator). Let {dk}k≥0 be a complex martingale difference in Lp[0, 1], where 1 < p < ∞,

and {εk}k≥0 a sequence of signs. We obtain the following generalization of Burkholder’s

famous result. If n ∈ Z+, then we have the following estimate

∥∥∥ n∑
k=0

(
εk, τ

)
dk

∥∥∥
Lp([0,1],C2)

≤
(
(p∗ − 1)2 + τ2)1

2
∥∥∥ n∑
k=0

dk

∥∥∥
Lp([0,1],C)

,

with
(
(p∗−1)2+τ2)1

2 being the sharp constant in the estimate for 1 < p < 2 and τ2 ≤ 1
2p−1

or 2 ≤ p < ∞ and τ ∈ R, where p∗ − 1 = max{p − 1, 1
p−1}. This result is significant not

only because it is a generalization of Burkholder’s famous result from the 1980’s, but also

because we can apply to obtaining the exact operator norm of a certain singular integral

operator.



Let R1 and R2 be the planar Riesz transforms. We compute the Lp-operator norm of a

quadratic perturbation of R2
1 −R

2
2 as

∥∥∥(R2
1 −R

2
2 , τI)

∥∥∥
Lp(C,C)→Lp(C,C2)

=
(
(p∗ − 1)2 + τ2)1

2 ,

for 1 < p < 2 and τ2 ≤ 1
2p−1 or 2 ≤ p <∞ and τ ∈ R. To obtain the lower bound estimate

of, what we are calling a quadratic perturbation of R2
1 − R

2
2, we discuss a new approach of

constructing laminates (a special type of probability measure on matrices) to approximate

the Riesz transforms.



To my wife Lindsey and daughter Elizabeth

iv



ACKNOWLEDGMENT

First of all, I would like to express my deepest and sincerest gratitude to my dissertation

advisor, Dr. Alexander Volberg for his invaluable support, guidance and personal care. It is

beyond my words of appreciation that he is a far-sighted person with a broad perspective,

and that he has a unique creative insight which often sheds light on undiscovered potentiali-

ties of a subject. Throughout these years, he has been cultivating my passion in science and

academic aspirations. He has had enormous patience with me, even during the most chal-

lenging times in my Ph.D. study. It has been an enormously enjoyable experience working

with him.

My gratitude also goes to my defense committee members Dr. Fedor Nazarov, Dr.

Michael Shapiro, Dr. Yang Wang, Dr. Clifford Weil, and Dr. Dapeng Zhan for their exper-

tise and precious time. I also would like to thank Dr. Zhengfang Zhou and Dr. Baisheng

Yan their generous support throughout my Ph.D. program, and Dr. Ignacio Uriarte-Tuero

for his guidance, support and the inspiring classroom discussions.

Moreover, I would like to thank Dr. Prabhu Janakiraman, Dr. Vasily Vasyunin, Dr.
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Dr. Matthew Bond, Mr. Nikolaus Pattakos and Mr. Alexander Reznikov. This group has

been very close, much like a family and I will always treasure our friendships. I am also

grateful to Ms. Barbara Miller, Graduate Secretary in the Department of Mathematics, for

her generous help during my graduate study.

I am, very much, indebted to Ms. Sharon Griffin for all of her support, guidance and

v



mentoring which has definitely shaped me as an educator and to Dr. Jerry Caldwell and Mr.

Theodore Caldwell for the opportunities and support that they have given me. Teaching for

the Drew Science Scholars and the Diversity Programs Organization within Engineering has

completely changed the way that I teach, as well as, my career path.

Finally, I would like to thank my wife for her love, support and understanding throughout

my Ph.D. study. She has always been patient with me through this long and difficult process.

I cannot come up with the words to appropriately express my gratitude.

vi



TABLE OF CONTENTS

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 A Quadratic Perturbation of the Martingale Transform . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Motivation of the Bellman function . . . . . . . . . . . . . . . . . . . 8
2.1.2 Outline of Argument to Prove Main Result . . . . . . . . . . . . . . . 11
2.1.3 Properties of the Bellman function . . . . . . . . . . . . . . . . . . . 12
2.1.4 Monge-Ampère equation and method of “characteristics” . . . . . . . 16

2.2 Computing the Bellman function candidate from the Monge-Ampère solution 21
2.2.1 Bellman candidate for 2 < p <∞ . . . . . . . . . . . . . . . . . . . . 22

2.2.1.1 Case (12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1.2 Case (22) for 2 < p <∞ . . . . . . . . . . . . . . . . . . . . 32
2.2.1.3 Gluing together partial candidates from Cases (12) and (22) 34

2.2.2 The Bellman function candidate for 1 < p < 2 . . . . . . . . . . . . . 40
2.3 Monge-Ampère solution is the Bellman function . . . . . . . . . . . . . . . . 42
2.4 Proving the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5 Proof of Proposition 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5.1 Considering Case (32) . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.2 Case (2) for 1 < p < 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Remaining cases and why they do not give the Bellman function candidate . 67
2.6.1 Case (12) for 1 < p < 2 and Case (32) for 2 < p <∞ . . . . . . . . . 67
2.6.2 Case (11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.6.3 Case (31) does not provide a Bellman function candidate . . . . . . . 72
2.6.4 Case(21) gives a partial Bellman function candidate . . . . . . . . . . 74
2.6.5 Case (4) may or may not yield a Bellman function candidate . . . . . 74

3 Laminates Meet Burkholder Functions . . . . . . . . . . . . . . . . . . . . . 76
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Lower Bound Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.1 Laminates and gradients . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2.2 Laminates and lower bounds . . . . . . . . . . . . . . . . . . . . . . . 80

vii



3.2.3 Proof of Theorem 73 . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3 Comparison with Burkholder functions . . . . . . . . . . . . . . . . . . . . . 85

3.3.1 Analyzing the Burkholder functions U and v . . . . . . . . . . . . . . 86
3.3.2 Why the laminate sequence νN worked in Theorem 73 . . . . . . . . 88

3.4 Upper Bound Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.1 Background information and notation . . . . . . . . . . . . . . . . . . 93
3.4.2 Extending the martingale estimate to continuous time martingales . . 95
3.4.3 Connecting the martingales to the Riesz transforms . . . . . . . . . . 97
3.4.4 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 Dissertation achievements and future work . . . . . . . . . . . . . . . . . . 100
4.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



LIST OF FIGURES

Figure 2.1 Sample characteristic of solution from Case (12) . . . . . . . . . . . 22

Figure 2.2 Sector for characteristics in Case (12), when p > 2. . . . . . . . . . . 24

Figure 2.3 Sample characteristic of Monge-Ampère solution in Case (21) . . . . 32

Figure 2.4 Sample characteristic of Monge-Ampère solution for Case (22) . . . 32

Figure 2.5 Characteristics of Bellman candidate for 2 < p <∞ . . . . . . . . . 35

Figure 2.6 Characteristics of Bellman candidate for 1 < p < 2. . . . . . . . . . 40

Figure 2.7 Location of Implicit (I) and Explicit (E) part of Bτ for 2 ≤ p <∞. . 44

Figure 2.8 Sample characteristic of Monge-Ampère solution in Case (32) . . . . 57

Figure 2.9 Range of characteristics in Case (32) for 1 < p < 2. . . . . . . . . . . 59

Figure 2.10 Splitting [−1, 1]× (1, 2) in the (τ × p)–plane into three regions A,B

and C. Region B =
{
τ2 ≤ 1

2p−1

}
. . . . . . . . . . . . . . . . . . . 64

Figure 2.11 Sample characteristic for Monge-Ampère solution in Cases (11) and
(31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 2.12 Characteristic of solution in Case (41). . . . . . . . . . . . . . . . . 75

Figure 2.13 Characteristic for the solution from Case (42) . . . . . . . . . . . . . 75
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Chapter 1

Introduction

Determining the exact Lp-operator norm of a singular integral operator is a difficult task to

accomplish in general. Classically, the Hilbert transform’s operator norm was determined

by Pichorides [32]. More recently, the real and imaginary parts of the Ahlfors–Beurling

operator were determined by Nazarov,Volberg [31] and Geiss, Montgomery-Smith, Saksman

[24]. Considering the full Alhfors–Beurling operator, the lower bound was determined as

p∗ − 1 by Lehto [28], or a new proof of this fact in [10]. On the other hand the upper bound

has been quite a bit more difficult. Iwaniec conjectured in [25] that the upper bound is p∗−1.

However, attempts at getting the conjectured upper bound of p∗ − 1 have been unsuccessful

so far. The works of Bañuelos,Wang [4], Nazarov, Volberg [31], Bañuelos, Méndez-Hernández

[2], Dragičevic̀, Volberg [22], Bañuelos, Janakiraman [3], and Borichev, Janakiraman, Volberg

[5] have progressively gotten closer to p∗−1 as the upper bound, but no one has yet achieved

it. We note that all of these upper bound estimates crucially rely on Burkholder’s estimates

[15] of the martingale transform. Burkholder’s estimates of the martingale transform even

play a crucial part in determining the sharp lower bounds of the real and imaginary parts of
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the Alhfors-Beurling operator as seen in Geiss, Montgomery-Smith, Saksman [24]. Also, in

[24] it becomes clear that if one can determine the Lp-operator norm of some perturbation

of the martingale transform then one can use it to determine the Lp-operator norm of the

same perturbation of the real or imaginary part of the Alhfors-Beurling operator. The

focus of Chapter 2 is determining the Lp-operator norm for a “quadratic perturbation” of

the martingale transform using the Bellman function technique, which is similar to how

Burkholder originally did, for τ = 0, in [15]. By “quadratic perturbation”, we are referring

to the quantity (Y 2 + τ2X2)
1
2 , where τ ∈ R is small, X is a martingale and Y is the

corresponding martingale transform.

We claim that our operator

∥∥∥(R2
1 −R

2
2 , τI)

∥∥∥
Lp(C,C)→Lp(C,C2)

,

represents a simpler model of the difficulties encountered by treating the Ahlfors–Beurling

transform. An extra interesting feature of this operator is that there it breaks the symmetry

between p ∈ (1, 2) and p ∈ (2,∞). Another interesting feature is that it is simpler to treat

than a seemingly simpler perturbation R2
1 − R2

2 + τI, whose norm in Lp is horrendously

difficult to find. The last assertion deserves a small elaboration. Burkholder found the

norm in Lp of the martingale transform, where the family of transforming multipliers εI

run over [−1, 1]. It is not known how (and it seems very difficult) to find the norm of the

martingale transform, where the family of transforming multipliers εI run over [−0.9, 1.1].

That would be the norm in Lp of R2
1 −R

2
2 + 0.1 I = 1.1R2

1 − 0.9R2
2. However, if one writes

the perturbation in the form we did this above, the problem immediately becomes much

more treatable, and we manage to find the precise formula for the norm for a wide range of

2



p’s and τ ’s.

The method of Bourgain [11], for the Hilbert transform, which was later generalized for

a large class of Fourier multiplier operators by Geiss, Montgomery-Smith, Saksman [24], is

to discretize the operator and generalize it to a higher dimensional setting. This operator in

the higher dimensional setting will turn out to have the same operator norm and it naturally

connects with discrete martingales, if done in a careful and clever way. At the end, one

has the operator norm of the singular integral bounded below by the operator norm of

the martingale transform, which Burkholder found in [15]. This approach can be used for

estimating
∥∥∥(R2

1 − R
2
2 , τI)

∥∥∥
Lp→Lp

from below as well, see [10]. However, we will present

an entirely different approach to the problem.

Rather than working with estimates on the martingale transform, we only need to consider

the “Burkholder” functions that were used to find those sharp estimates on the martingale

transform. More specifically, we analyze the behavior of the Burkholder functions, U and

v found in Chapter 2, associated with determining the Lp-operator norm of the quadratic

perturbation of the martingale transform. Using the fact that U is the least bi-concave

majorant of v (in the appropriately chosen coordinates), in addition to some of the ways

in which the two functions interact will allow us to construct an appropriate sequence of

laminates, which approximate the push forward of the 2-dimensional Lebesgue measure by

the Hessian of a smooth function with compact support. Once the appropriate sequence

of laminates is constructed, we are finished since the norm of the Riesz transforms can be

approximated by certain fractions of the partial derivatives of smooth functions. The beauty

of this method is that it quickly gets us the sharp lower bound constant with very easy

calculations. This lower bound argument is discussed in Section 3.2.
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The use of laminates for obtaining lower bounds on Lp-estimates has been first recognized

by D. Faraco. In [23] he introduced the so-called staircase laminates. These have also been

used in refined versions of convex integration in [1] in order to construct special quasiregular

mappings with extremal integrability properties. Staircase laminates also proved useful in

several other problems, see for instance [21].

In this text we will use a continuous, rather than a discrete laminate. More importantly,

in contrast to the techniques used in [23, 1, 21] we will construct the laminate indirectly

using duality. The advantage is essentially computational, we very quickly obtain the sharp

lower bounds. Indeed, the lower bound follows from the following inequality

f(1, 1) ≤ 1

(1− k)

∫ ∞
1

[f(kt, t) + f(t, kt)]t−pk dt
t
,

where k ∈ (−1, 1) and pk = 2
1−k , and valid for all biconvex functions f : R2 → R with

f(x) = o(|x|pk ) as |x| → ∞ (see Section 3.2.3).

The “Burkholder” functions U and v also play a crucial role in obtaining the sharp

upper bound estimate as well. With the Burkholder functions we are able to extend sharp

estimates of (Y 2 + τ2X2)
1
2 , obtained in Chapter 2, from the discrete martingale setting to

the continuous martingale setting. The use of “heat martingales”, as in [2] and [3], will allow

us to connect the Riesz transforms to the continuous martingales estimate, without picking

up any additional constants. This upper bound argument is presented in Section 3.4.
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Chapter 2

A Quadratic Perturbation of the

Martingale Transform

2.1 Introduction

In a series of papers, [12] to [19], Burkholder was able to compute the Lp operator norm

of the martingale transform, which we will denote as MT. This was quite a revolutionary

result, not only because of the result itself but because of the method for approaching the

problem. Burkholder’s method in these early papers was inspiration for the Bellman function

technique, which has been a very useful tool in approaching modern and classical problems

in harmonic analysis (this chapter will demonstrate the Bellman function technique as well).

But, the result itself has many applications. One particular application of his result is for

obtaining sharp estimates for singular integrals. Consider the Ahlfors-Beurling operator,

which we will denote as T. Lehto, [28], showed in 1965 that ‖T‖p := ‖T‖p→p ≥ (p∗ − 1) =

max
{
p− 1, 1

p−1

}
. Iwaniec conjectured in 1982, [25], that ‖T‖p = p∗−1. The only progress

5



toward proving that conjecture has been using Burkholder’s result, see [31], [2] and [3] for

the major results toward proving the conjecture. However, Burkholder’s estimates have

been useful for lower bound estimates as well. For example, Geiss, Montgomery-Smith and

Saksman, [24], were able to show that ‖<T‖p, ‖=T‖p ≥ p∗ − 1, by using Burkholder’s

estimates. The upper bound for these two operators were determined as p∗ − 1 by Nazarov,

Volberg, [31] and Bañuelos, Mèndez-Hernàndez [2], so we now have ‖<T‖p = ‖=T‖p =

p∗ − 1. Note that <T the difference of the squares of the planar Riesz transforms, i.e.

T = R2
1 −R

2
2.

A recent result of Geiss, Montomery-Smith and Saksman, [24] points to the following

observation, though not immediately. We can estimate linear combinations of squares of

Riesz transforms if we know the corresponding estimate for a linear combination of the

martingale transform and the identity operator. In other words, one can get at estimates

of the norm of (R2
1 − R2

2) + τ · I, by knowing the estimates of the norm of MT + τ · I.

‖MT+τ ·I‖p has only been computed for either τ = 0 by Burkholder [15] or τ = ±1 by Choi

[20]. The problem is still open for all other τ -values and seems to be very difficult, though

we have had some progress. But, if we consider “quadratic” rather than linear perturbations

then things become more manageable. This brings us to the focus of this paper, which is

determining estimates for quadratic perturbations of the martingale transform, which will

have connections to quadratic combinations of squares of Riesz transforms.

To prove our main result we are going to take a slightly indirect approach. Burkholder

(see [15]) defined the martingale transform, MTε, as

MTε

( n∑
k=1

dk

)
:=

n∑
k=1

εkdk.

6



Then the main result can be stated as

sup
~ε

∥∥∥(MT~ε, τI
)∥∥∥
Lp(C)→Lp(C2)

= sup
~ε

∥∥∥∑n
k=1

(
εk, τ

)
dk

∥∥∥
p∥∥∑n

k=1 dk
∥∥
p

= ((p∗ − 1)2 + τ2)
1
2 ,

where I is the identity transformation and τ is “small”. However, rather than working

with this martingale transform in terms of the martingale differences, in a probabilistic

setting, we will define another martingale transform in terms of the Haar expansion of

Lp[0, 1] functions and set up a Bellman function in that context. Burkholder showed, in

[19], that these two different martingale transforms have the same Lp operator norm, for

τ = 0, so we expected a perturbation of these to act similarly and it turns out that they

do. For convenience, we will work with the martingale transform in the Haar setting. Using

the Bellman function technique will turn the problem of finding the sharp constant of the

above estimate into solving a second order partial differential equation. The beauty of this

approach is that it gets right to the heart of the problem with very little advanced techniques

needed in the process. In fact, the only background material that is needed for the Bellman

function technique approach, is some basic knowledge of partial differential equations and

some elementary analysis.

Observe that for 2 ≤ p <∞, the estimate from above is just an application of Minkowski’s

inequality on L
p
2 and Burkholder’s original result. But, this argument does not address

sharpness, even though the constant obtained turns out to be the sharp constant for all τ .

For 1 < p < 2, Minkowski’s inequality (in l
2
p ) also plays a role, but to a lesser extent and

cannot give the sharp constant, as we will see Proposition 33. It is, indeed, very strange that

such sloppy estimation could give the estimate with sharp constant for 1 ≤ p <∞. We will

now rigorously develop some background ideas needed to set up the Bellman function.

7



In our calculations we follow the scheme of [37], but our “Dirichlet problem” for Monge-

Ampère is different. For small τ the scheme works. For large τ and 1 < p < 2 it definitely

must be changed, as will be shown later. The amazing feature is the “splitting” of the result

to two quite different cases: 1 < p < 2 and 2 ≤ p < ∞, where in the former case we know

the result only for small τ, but in the latter one τ is unrestricted.

2.1.1 Motivation of the Bellman function

Let I be an interval and α± ∈ R+ such that α++α− = 1. These α± generate two subinter-

vals I± such that |I±| = α±|I| and I = I−∪I+. We can continue this decomposition indefi-

nitely as follows. For any sequence {αn,m : 0 < αn,m < 1, 0 ≤ m < 2n, 0 < n <∞, αn,2k+

αn,2k+1 = 1}, we can generate the sequence I := {In,m : 0 ≤ m < 2n, 0 < n <∞}, where

In,m = I−n,m∪I+
n,m = In+1,2m+1∪In+1,2m+1 and α− = αn+1,2m,α

+ = αn+1,2m+1.

Note that I0,0 = I.

For any J ∈ I we define the Haar function hJ := −
√

α+

α−|J |
χ
J− +

√
α−
α+|J |

χ
J+. If

max{|In,m| : 0 ≤ m < 2n} → 0 as n → ∞, then {hJ}J∈I is an orthonormal basis for

L2
0(I) := {f ∈ L2(I) :

∫
I f = 0}. However, if we add one extra function, then Haar functions

form an orthonormal basis in L2[0, 1] function. We will show that this is true in the case

I0 = [0, 1] and I = D as the dyadic subintervals of I0. The Bellman function will also be set

up under this specific choice of I = D for clarity. As it will turn out the Bellman function

will be the same under the the choice of I, so the fact that we set up the Bellman function

under this specific choice of I will not matter.

Let Dj = {I ∈ D : |I| = 2−j}. We use the notation 〈f〉J to represent the average

integral of f over the interval J ∈ D and ∆jf = 〈f〉Ij+1
− 〈f〉Ij , where Ij ∈ Dj and

8



Ij+1 ∈ Dj+1. For any f ∈ L1(I0) we have ∆jf =
∑
I∈Dj (f, hI )hI . Then

∞∑
j=0

∆jf = lim
N→∞

〈f〉IN+1
− 〈f〉I0 (2.1)

By Lebesgue differentiation, the limit in (2.1) converges to f almost everywhere as N →∞.

So any f ∈ Lp(I0) ⊂ L1(I0) can be decomposed in terms of the Haar system as

f = 〈f〉I0
χ
I0

+
∑
I∈D

(f, hI )hI .

In terms of the expansion in the Haar system we define the martingale transform, g of f, as

g := 〈g〉I0χI0 +
∑
I∈D

εI (f, hI )hI ,

where εI ∈ {±1}. Requiring that |(g, hJ )| = |(f, hJ )|, for all J ∈ D, is equivalent to g being

the martingale transform of f, for f, g ∈ Lp(I0).

Now we define the Bellman function as B(x1, x2, x3) :=

sup
f,g

{
〈(g2 + τ2f2)

p
2 〉I : x1 = 〈f〉I , x2 = 〈g〉I , x3 = 〈|f |p〉I , |(f, hJ )| = |(g, hJ )|, ∀J ∈ D

}

on the domain Ω = {x ∈ R3 : x3 ≥ 0, |x1|p ≤ x3}. The Bellman function is defined in this

way, since we would like to know the value of the supremum of ‖(g, τf)‖p , where g is the

martingale transform of f . Note that |x1|p ≤ x3 is just Hölder’s inequality. Even though

the Bellman function is only being defined for real-valued functions, we can “vectorize” it to

work for complex-valued (and even Hilbert-valued) functions, as we will later demonstrate.
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Finding the Bellman function will make proving the following main result quite easy. We

will call
〈
(g2 + τ2f2)

p
2
〉1
p
I the “quadratic perturbation” of the martingale transform’s norm

〈|g|p〉
1
p
I .

Theorem 1. Let {dk}k≥1 be a complex martingale difference in Lp[0, 1], where 1 < p <∞,

and {εk}k≥1 a sequence in {±1}. If n ∈ Z+, then

∥∥∥ n∑
k=1

(
εk, τ

)
dk

∥∥∥
Lp([0,1],C2)

≤
(
(p∗ − 1)2 + τ2)1

2
∥∥∥ n∑
k=1

dk

∥∥∥
Lp([0,1],C)

,

with
(
(p∗ − 1)2 + τ2)p2 as the sharp constant for τ2 ≤ 1

2p−1 and 1 < p < 2 or τ ∈ R and

2 ≤ p <∞.

Note that when τ = 0 we get Burkholder’s famous result [15].

Now that we have the problem formalized, notice that B is independent of the initial

choice of I0 (which we will just denote I from now on) and {αn,m}n,m, so we return to

having them arbitrary. Finding B when p = 2 is easy, so we will do this first.

Proposition 2. If p = 2 then B(x) = x2
2 − x

2
1 + (1 + τ2)x3.

Proof. Since f ∈ L2(I) then f = 〈f〉IχI +
∑
J∈D (f, hJ )hJ implies

〈|f |2〉I =
1

|I|

∫
I
|f |2

= 〈f〉2I + 2〈f〉I
∑
J∈D

(f, hJ )
1

|I|

∫
I
hJ +

1

|I|

∫
I

∑
J,K∈D

(f, hJ )(f, hK)hJhK

= 〈f〉2I +
1

|I|
∑
J∈D

|(f, hJ )|2.
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So ‖f‖22 = |I|x3 = |I|x2
1 +

∑
J∈D |(f, hJ )|2 and similarly

‖g‖22 = |I|x2
2 +

∑
J∈D

|(g, hJ )|2 = |I|x2
2 +

∑
J∈D

|(f, hJ )|2.

Now we can compute B explicitly, (p = 2)

〈(g2 + τ2f2)
p
2 〉I = 〈|g|2〉I + τ2〈|f |2〉I = x2

2 + τ2x2
1 + (1 + τ2)

1

|I|
∑
J∈D

|(f, hJ )|2

= x2
2 + τ2x2

1 + (1 + τ2)(x3 − x
2
1).

Remark 3. The fact that τ remains restricted when p approaches 2 from the left is by-product

of a certain inefficiency in the proof. But for the time being we do not know how to lighten

the restriction on τ when p approaches 2 from the left.

2.1.2 Outline of Argument to Prove Main Result

Computing the Bellman function, B, for p 6= 2, is much more difficult, so more machinery is

needed. In Section 2.1.3 we will derive properties of the Bellman function, the most notable

of which is concavity under certain conditions. Finding a B to satisfy the concavity will

amount to solving a partial differential equation, after adding an assumption. This PDE

has a solution on characteristics that is well known, so we just need to find an explicit

solution from this, using the Bellman function properties. How the characteristics behave

in the domain of definition for the Bellman function will give us several cases to consider.

In Section 2.2 we will get a Bellman function candidate for 1 < p <∞ by putting together

several cases. Once we have what we think is the Bellman function, we need to show that

11



it has the necessary smoothness and that Assumption 8 was not too restrictive to give us

the Bellman function. This is covered in Section 2.3. Finally the main result is shown in

Section 2.4. In Section 2.6, we show why several cases did not lead to a Bellman function

candidate and why the value of τ was restricted for the Bellman function candidate.

2.1.3 Properties of the Bellman function

One of the properties we nearly always have (or impose) for any Bellman function, is con-

cavity (or convexity). It is not true that B is globally concave, on all of Ω, but under certain

conditions it is concave. The needed condition is that g is the martingale transform of f, or

|x+
1 − x

−
1 | = |x

+
2 − x

−
2 | in terms of the variables in Ω.

Definition 4. We say that the function B on Ω has restrictive concavity if for all x± ∈ Ω

such that x = α+x+ + α−x−, α+ + α− = 1 and |x+
1 − x

−
1 | = |x+

2 − x
−
2 |, then B(x) ≥

α+B(x+) + α−B(x−).

Proposition 5. The Bellman function B is restrictively concave in the x-variables.

Proof. Let ε > 0 be given and x± ∈ Ω. By the definition of B, there exists f±, g± on I±

such that 〈f〉
J± = x±1 , 〈g〉J± = x±2 , 〈|f

±|p〉
I± = x±3 and

B(x±)− 〈[(g±)2 + τ2(f±)2]
p
2 〉
I± ≤ ε.

On I = I+ ∪ I− we define f and g as f := f+χ
I+ + f−χ

I− , g := g+χ
I+ + g−χ

I− . So,

|x+
1 − x

−
1 | = |〈f〉I+ − 〈f〉I−| =

∣∣∣ 1

|I+|

∫
|I−|

f − 1

|I−|

∫
I−

f
∣∣∣

=
∣∣∣ 1

α+|I|

∫
|I−|

f − 1

α−|I|

∫
I−

f
∣∣∣ =

1

|I|

∣∣∣∫ f
( 1

α+
χ
I+ −

1

α−
χ
I−
)∣∣∣

12



=

√
|I|

α+α−

∣∣∣∣∫ fhI

∣∣∣∣ =:

√
|I|

α+α−
∣∣(f, hI )

∣∣ .
Similarly,|x+

2 − x−2 | =

√
|I|

α+α−
∣∣(g, hI )

∣∣ . So our assumption |x+
1 − x−1 | = |x+

2 − x−2 | is

equivalent to |(f, hI )| = |(g, hI )|. Since x1 = 〈f〉I , x2 = 〈g〉I and x3 = 〈|f |p〉I , f and g are

test functions and so

B(x) ≥ 〈(g2 + τ2f2)
p
2 〉I

= α+〈[(g+)2 + τ2(f+)2]
p
2 〉
I+ + α−〈[(g−)2 + τ2(f−)2]

p
2 〉
I−

≥ α+B(x+) + α−B(x−)− ε.

At this point we do not quite have concavity of B on Ω since there is the restriction

|x+
1 − x

−
1 | = |x

+
2 − x

−
2 | needed. To make this condition more manageable, we will make a

change of coordinates. Let y1 :=
x2+x1

2 , y2 :=
x2−x1

2 and y3 := x3. We will also change

notation for the Bellman function and corresponding domain in the new variable y. Let

M(y1, y2, y3) := B(x1, x2, x3) = B(y1 − y2, y1 + y2, y3). Then the domain of definition for

M will be Ξ := {y ∈ R3 : y3 ≥ 0, |y1 − y2|p ≤ y3}.

If we consider x± ∈ Ω such that |x+
1 − x

−
1 | = |x

+
2 − x

−
2 |, then the corresponding points

y± ∈ Ξ satisfy either y+
1 = y−1 or y+

2 = y−2 . This implies that fixing y1 as y+
1 = y−1 or y2

as y+
2 = y−2 will makeM concave with respect to y2, y3 under fixed y1 and with respect to

y1, y3 under y2 fixed.

Rather than using Proposition 5 to check the concavity of the Bellman function we can

just check it in the following way, assuming M is C2. Let j 6= i ∈ {1, 2} and fix yi as

13



y+
i = y−i . Then M as a function of yj, y3 is concave if

Myjyj Myjy3

My3yj My3y3

 ≤ 0,

which is equivalent to

Myjyj ≤ 0,My3y3 ≤ 0, Dj =MyjyjMy3y3 −My3yjMyjy3 ≥ 0.

Proposition 6. (Restrictive Concavity in y-variables) Let j 6= i ∈ {1, 2} and fix yi as

y+
i = y−i . If Myjyj ≤ 0,My3y3 ≤ 0 and Dj =MyjyjMy3y3 − (Myjy3)2 ≥ 0 for j = 1

and j = 2, then M is Restrictively concave.

The Bellman function, as it turns out, has many other nice properties.

Proposition 7. Suppose that M is C1(Ξ), then M has the following properties.

(i) Symmetry: M(y1, y2, y3) =M(y2, y1, y3) =M(−y1,−y2, y3)

(ii) Dirichlet boundary data: M(y1, y2, (y1 − y2)p) = ((y1 + y2)2 + τ2(y1 − y2)2)
p
2

(iii) Neumann conditions: My1 =My2 on y1 = y2 and My1 = −My2 on y1 = −y2

(iv) Homogeneity: M(ry1, ry2, r
py3) = rpM(y1, y2, y3), ∀r > 0

(v) Homogeneity relation: y1My1 + y2My2 + py3My3 = pM

Proof. (i) Note that we get B(x1, x2, x3) = B(−x1, x2, x3) = B(x1,−x2, x3) by consider-

ing test functions f̃ = −f and g̃ = −g. Change coordinates from x to y and the result

follows.
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(ii) On the boundary {x3 = |x1|p} of Ω we see that

1

|I|

∫
I
|f |p = 〈|f |p〉I = x3 = |x1|

p = |〈f〉I |
p =

∣∣∣ 1

|I|

∫
I
f
∣∣∣p

is only possible if f ≡ const. (i.e. f = x1). But, |(f, hJ )| = |(g, hJ )| for all J ∈ I,

which implies that g ≡ const. (i.e. g = x2). Then B(x1, x2, |x1|p) = 〈(g2+τ2f2)
p
2 〉I =

(x2
2+τ2x2

1)
p
2 . Changing coordinates gives the result. If we are not on the boundary, but

close to it, then any test function has the p-th power of its average close to the average

of its p-th power. This means that the function itself is close to its average in Lp-

norm. We know a priori that the martingale transform is bounded in Lp, 1 < p <∞.

Hence the value of B for the data close to the boundary will be close to the martingale

transform of a constant function considered above. We are done.

(iii) This follows from from (i).

(iv) Consider the test functions f̃ = rf, g̃ = rg

(v) Differentiate (iv) with respect to r and evaluate it at r = 1.

Now that we have all of the properties of the Bellman function we will turn our attention

to actually finding it. Proposition 6 gives us two partial differential inequalities to solve,

D1 ≥ 0, D2 ≥ 0, that the Bellman function must satisfy. Since the Bellman function is the

supremum of the left-hand side of our estimate under the condition that g is the martingale

transform of f and must also satisfy the estimates in Proposition 6, it seems reasonable that

the Bellman function (being the optimal such function) may satisfy the following, for either

j = 1 or j = 2:

Dj =MyjyjMy3y3 − (My3yj )2 = 0.
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The PDE that we now have is the well known Monge-Ampère equation which has a solution.

Let us make it clear that we have added an assumption.

Assumption 8. Dj =MyjyjMy3y3 − (My3yj )2 = 0, for either j = 1 or j = 2.

Adding this assumption comes with a price. Any function that we construct, satisfying

all properties of the Bellman function, must somehow be shown to be the Bellman function.

We will refer to any function satisfying some, or all Bellman function properties as a Bellman

function candidate.

In Subsection 2.1.4 we use [35] to explain what consequences the assumption 8 will have

on our search of Bellman function candidate.

2.1.4 Monge-Ampère equation and method of “characteristics”

Let v = v(x1, ..., xn) is a smooth function satisfying the following Monge-Ampère equation

in some domain Ω

det d2v = det


vx1x1 · · · vx1xn

. . . . . . . . . . . . . . . . . . . .

vxnx1 · · · vxnxn

 = 0 , ∀x = (x1, . . . , xn) ∈ Ω , (2.2)

and suppose that this matrix has rank n − 1; i.e., all smaller minors of d2v are non-zero.

Then there are functions ti(x1, . . . , xn), i = 0, 1, . . . , n, such that

v(x) = t0 + t1x1 + t2x2 + · · ·+ tnxn (2.3)
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and the following n− 1 linear equations hold:

dt0 + x1dt1 + x2dt2 + · · ·+ xn−1dtn−1 + xndtn = 0 . (2.4)

Let us explain why this is n−1 equations and why they are linear. One needs to read (2.4)

as follows: we think that, say, t1, . . . , tn−1 are n − 1 independent variables and tn, t0 are

functions of them. Then (2.4) can be rewritten as

(∂t0
∂t1

+ x1 + xn
∂tn
∂t1

)
dt1 + · · ·+

( ∂t0
∂tn−1

+ xn−1 + xn
∂tn
∂tn−1

)
dtn−1 = 0 ,

whence

xi + xn
∂tn
∂ti

+
∂t0
∂ti

= 0 , i = 1, . . . , n− 1 .

So we get n− 1 equations.

Remark. In general we can choose any n− 1 variables as independent, of course. Since the

order of variables is arbitrary, sometimes the first n− 1 is not the most convenient choice.

Now why are these linear equations? We think that t1, . . . , tn−1 is fixed. Then the n−1

equations give us linear relationships in x1, . . . , xn, so n− 1 hyperplanes.

Therefore, (2.4) gives the intersection of n − 1 hyperplanes, so gives us a line. We can

call it Lt1,...,tn−1
. These lines foliate domain Ω and (2.3) shows that v is a linear function

on each such line.

Let us prove all these propositions. Matrix d2v annihilates one vector Θ(x) at ev-

ery x = (x1, ..., xn) ∈ Ω. So we get a vector field Θ. Consider its integral curve x1 =
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x1(xn), . . . , xn−1 = xn−1(xn). Vector Θ(x) is a tangent vector to that curve; i.e.,

Θ = Θn



x′1

x′2

· · ·

x′n−1

1


. (2.5)

Consider a new function g(xn) = v(x1(xn), . . . , xn−1(xn), xn). Due to (2.5) its second

derivative is

g′′ =
〈
d2v



x′1

x′2

· · ·

x′n−1

1


,



x′1

x′2

· · ·

x′n−1

1



〉
+vx1x

′′
1 +· · ·+vxn−1x

′′
n−1 = vx1x

′′
1 +· · ·+vxn−1x

′′
n−1 .

(2.6)

Now, let us also show that vx1 , . . . , vxn−1 are constants on this integral curve. Sup-

pose we are standing on the integral curve. The surface vx1 = t1 = const. has normal

(vx1x1 , . . . , vx1xn), that is the first row of matrix d2v, which is orthogonal to the direc-

tional vector Θ of the integral curve. Hence Θ is in the tangent hyperplane to the surface

vx1 = t1. The same is true for the surfaces vxi = ti = const., i = 2, . . . , n − 1. Inter-

section of these surfaces gives us our integral curves, because Θ is in the intersection of all

tangent planes to these surfaces. Therefore the curves Ct1,...,tn−1
enumerated by constants

t1, . . . , tn are just the integral curves of the tangent bundle Θ. Thus, (2.6) can be rewritten
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as

d2

dx2
n

(
g − (t1 x1 + · · ·+ tn xn−1)

)
= 0. (2.7)

We obtain that the second derivative of a function g(xn) = v(x1(xn), . . . , xn−1(xn), xn)

in (2.7) is zero. So function this function is linear in xn, that is g(xn) = tnxn + t0, where

the constants tn, t0 depend only on the curve Ct1,...,tn−1
, that is

tn = tn(t1, . . . , tn−1) , t0 = t0(t1, . . . , tn−1) .

Looking at the definition of g(xn) we see that we obtained on Ct1,....,tn−1
the following

v(x1(xn), . . . , xn−1(xn), xn) = t0 + x1t1 + · · ·+ xn−1tn−1 + tnxn .

Since we assumed our vector field to be smooth and its integral curves foliate the whole

domain, varying parameters t1, . . . , tn we get (2.3). To check (2.4) take a full differential

in (2.3). Then

[vx1dx1 + · · ·+ vxndxn] = dv = [dt0 + t1dx1 + · · ·+ tndxn] + x1dt1 + · · ·+ xndtn . (2.8)

We are on Ct1,...,tn−1
and so vxi = ti, i = 1, . . . , n− 1 as we established already. But it is

also easy to see that

vxn = tn(t1, . . . , tn−1)

on Ct1,...,tn−1
. In fact, all vxi and all ti are symmetric. We could have chosen to represent

the integral curve of Θ not as xi = xi(xn), i = 1, . . . , n − 1 but as xj = xj(x1), j =

2, . . . , n. Now we see that two expression in brackets in (2.8) are equal. Then we obtain
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x1dt1 + · · ·+ xndtn + dt0 = 0, which is the desired n− 1 linear relationships (2.4).

From the consideration above we can see that the following proposition holds.

Proposition 9. For j = 1 or 2, if MyjyjMy3y3 − (My3yj )2 = 0 has a smooth solution,

then it should have a form M(y) = yjtj + y3t3 + t0. Here ti = ti(yj, y3), i = 0, 1, 2 are

functions of yj, y3 (and parameter y3−j). Furthermore, t0, tj , t3 have common level sets

called characteristics, and the differentials of these functions satisfy yjdtj+y3dt3 +dt0 = 0.

This shows that these common level sets (characteristics) are straight lines in the yj × y3

plane. Moreover, one can choose functions tj , t3 as follows: tj = Myj , t3 = My3 .

This is a result of Pogorelov, see [33]. We explained it above in Subsection 8. Now that

we have a solution M to the Monge-Ampère, we need get rid of t0, tj , t3 so that we have

an explicit form of M, without the characteristics. We note that a solution to the Monge-

Ampère is not necessarily the Bellman function. It must satisfy the restrictive concavity of

Proposition 6, be C1-smooth, and satisfy the properties of Proposition 7. The restrictive

concavity property is one of the key deciding factors of whether or not we have a Bellman

function in many cases. Even if the Monge-Ampère solution satisfies all of those conditions,

it must still be shown to be equal to the Bellman function, because we added an additional

assumption (Assumption 8) to get the Monge-Ampère solution as a starting point. This

will be considered rigorously in Section 2.3, after we obtain a solution to the Monge-Ampère

equation, with the appropriate Bellman function properties. So from this point on we will

use M and B to denote solutions to the Monge-Ampère equation; i.e. Bellman function

candidates, and M and B to denote the true Bellman function.
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2.2 Computing the Bellman function candidate from

the Monge-Ampère solution

Due to the symmetry property ofM, from Proposition 7, we only need to consider a portion

of the domain Ξ, which we will denote as, Ξ+ := {y : −y1 ≤ y2 ≤ y1, y3 ≥ 0, (y1 −

y2)p ≤ y3}. Since the characteristics are straight lines, one end of each line must be on

the boundary. Let U denote the point at which the characteristic touches the part of the

boundary {y : (y1−y2)p = y3} (if it does). Furthermore, the characteristics can only behave

in one of the following four ways, since they are straight lines in the plane:

(1) The characteristic goes from U to {y : y1 = y2}

(2) The characteristic goes from U to to infinity, running parallel to the y3-axis

(3) The characteristic goes from U to {y : y1 = −y2}

(4) The characteristic goes from U to {y : (y1 − y2)p = y3}

(5) The characteristic goes from the “wall” y2 = −y1 to the “wall” y2 = y1

To find a Bellman function candidate we must first fix a variable (y1 or y2) and a

case for the characteristics. Then we use the Bellman function properties to get rid of the

characteristics. If the Monge-Ampère solution satisfies restrictive concavity, then it is a

Bellman function candidate. However, checking the restrictive concavity is quite difficult in

many of the cases, since it amounts to doing second derivative estimates for an implicitly

defined function. Let us now find our Bellman function candidate.

Remark 10. Since we will have either y1 or y2 fixed in each case, there will be eight cases in

all. Let (1j), (2j), (3j), (4j), (5j) denote the case when MyjyjMy3y3 − (My3yj )2 = 0 and
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yi is fixed, where i 6= j. Also, we will denote G(z1, z2) := (z1 + z2)p−1[z1 − (p− 1)z2] and

ω :=

(
M(y)
y3

)1
p

from this point on.

Remark 11. Characteristics foliate the domain. Therefore the case of the existence of char-

acteristic of the type (5j) automatically implies that there exists a characteristic of type

(4j). Therefore we are not looking at the case (5j) at all in what follows.

2.2.1 Bellman candidate for 2 < p <∞

The solution to the Monge-Ampère equation when 2 < p <∞, is only partially valid on the

domain in two cases, due to restrictive concavity. Case (12), will give us an implicit solution

that is valid on part of Ξ+ and Case (22) will give us an explicit solution for the remaining

part of Ξ+. First, we deal with Case (12).

2.2.1.1 Case (12)

Since we are considering Case (12), y1 ≥ 0 is fixed until the point that we have the implicit

solution independent of the characteristics satisfying all of the Bellman function properties.

-

6

y2−y1

U

y1

y3

Figure 2.1: Sample characteristic of solution from Case (12)
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Proposition 12. For 1 < p <∞ and
p−2
p y1 < y2 < y1, M is given implicitly by the relation

G(y1 + y2, y1 − y2) = y3G(
√
ω2 − τ2, 1), where G(z1, z2) := (z1 + z2)p−1[z1 − (p− 1)z2]

on z1 + z2 ≥ 0 and ω :=

(
M(y)
y3

)1
p
.

This is proven through a series of Lemmas.

Lemma 13. M(y) = t2y2 + t3y3 + t0 on the characteristic y2dt2 + y3dt3 + dt0 = 0 can be

simplified to M(y) =

√(y1+u)2+τ2(y1−u)2

y1−u

p y3, where u is the unique solution to the

equation
y2+(2

p−1)y1
y3

=
u+(2

p−1)y1
(y1−u)p

and
p−2
p y1 < y2 < y1

Proof. A characteristic in Case (12) is from U = (y1, u, (y1 − u)p) to W = (y1, y1, w).

Throughout the proof we will use the properties of the Bellman function from Proposition 7.

Using the Neumann property and the property from Proposition 9 we get My1 = My2 = t2

at W. By homogeneity at W we get

py2t2 + pwt3 + pt0 = pM(W ) = y1My1 + y2My2 + py3My3 = 2y1t2 + pwt3.

Then t0 = (2
p − 1)y1t2 and dt0 = (2

p − 1)y1dt2, since y1 is fixed. So M(y) = [y2 +

(2
p − 1)y1]t2 + y3t3 on [y2 + (2

p − 1)y1]dt2 + y3dt3 = 0. By substitution we get, M(y) =

y3[t3− t2
dt3
dt2

] on characteristics. But, t2, t3,
dt3
dt2

are constant on characteristics, which gives

that
M(y)
y3

≡ const. as well. We can calculate the value of the constant by using the Dirichlet

boundary data for M at U. Therefore, M(y) =

√(y1+u)2+τ2(y1−u)2

y1−u

p y3, where u is

the solution to the equation

y2 + (2
p − 1)y1

y3
=
u+ (2

p − 1)y1

(y1 − u)p
. (2.9)
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Now fix u = −(2
p − 1)y1. Then we see that y2 = −(2

p − 1)y1 = u is also fixed by (2.9).

This means that the characteristics are limited to part of the domain, as shown in Figure 2.2,

since they start at U and end at W ∈ {y1 = y2}. All that remains is verifying the equation

6

-�
�
�
�
��

@
@
@
@
@@

��
��

��

y2 = y1

y2 = −y1

y2 =
(p−2
p
)
y1

y2

y1

Figure 2.2: Sector for characteristics in Case (12), when p > 2.

(2.9) has exactly one solution u = u(y1, y2, y3) in the sector
p−2
p y1 < y2 < y1. Indeed, the

function

f(u) := y3

[
u+

(
2

p
− 1

)
y1

]
− (y1 − u)p

[
y2 +

(
2

p
− 1

)
y1

]

is monotone increasing for u < y1, f(−(2
p − 1)y1) = −

(2
py1)p

[
y2 +

(2
p − 1

)
y1

]
< 0 and

f(y1) = 2
py1y3 > 0. Therefore, we do get a unique solution, u, in the sector.

Lemma 14. M(y) =

√(y1+u)2+τ2(y1−u)2

y1−u

p y3 can be rewritten as G(y1 + y2, y1 −

y2) = y3G(
√
ω2 − τ2, 1) for

p−2
p y1 < y2 < y1.

Proof. ω =

(
M(y)
y3

)1
p

=

√
(y1+u)2+τ2(y1−u)2

y1−u
≥ |τ | |y1−u|y1−u

= |τ |.

Since y1 ± u ≥ 0 and ω2 − τ2 ≥ 0, u =

√
ω2−τ2−1√
ω2−τ2+1

y1 by inversion. Substituting this

into
y2+(2

p−1)y1
y3

=
u+(2

p−1)y1
(y1−u)p

gives

2p−1y
p−1
1 [py2 − (p− 2)y1] = y3

(√
ω2 − τ2 + 1

)p−1[√
ω2 − τ2 − (p− 1)

]
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or (x1 + x2)p−1[x2 − (p− 1)x1]

=


√√√√√B

2
p −

τx1
p
3

2

+ x

1
p
3


p−1 

√√√√√B
2
p −

τx1
p
3

2

− (p− 1)x

1
p
3

 .

Thus,

G(x2, x1) = G


√√√√√B

2
p −

τx1
p
3

2

, x

1
p
3

 or G(y1 + y2, y1 − y2) = y3G(

√
ω2 − τ2, 1).

This proves Proposition 12. We have constructed a partial Bellman function candidate

from the Monge-Ampère solution in Case(12), so y1 no longer needs to be fixed. All of the

properties of the Bellman function were used to derive this partial Bellman candidate, but

the restrictive concavity from Proposition 6 still needs to be verified. To verify restrictive

concavity, we need that My2y2 ≤ 0,My3y3 ≤ 0, D2 ≥ 0 and My1y1 ≤ 0, D1 ≥ 0. By

assumption D2 = 0, so we need not worry about that estimate. The remaining estimates

will be verified in a series of Lemmas. The first Lemma is an idea taken from Burkholder [13]

to make the calculations for computing mixed partials shorter. In the Lemma, we compute

the partials of arbitrary functions which we will choose specifically later, although it is not

hard to see what the appropriate choices should be.

Lemma 15. Let H = H(y1, y2),Φ(ω) =
H(y1,y2)

y3
, R1 = R1(ω) := 1

Φ′ and R2 = R2(ω) :=

R′1 = − Φ′′
Φ′2

. Then

My3y3
=
pωp−2R1H

2

y3
3

[ωR2 + (p− 1)R1]
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My3yi
= −

pωp−2R1HH
′

y2
3

[ωR2 + (p− 1)R1]

Myiyi
=
pωp−2R1

y3

(
[ωR2 + (p− 1)R1](H′)2 + ωy3H

′′
)

Di = My3y3
Myiyi

−M2
y3yi

=
p2ω2p−3R2

1H
2H′′

y3
3

[ωR2 + (p− 1)R1],

where ω =
M(y)
y3

.

Proof. First of all we calculate the partial derivatives of ω:

Φ′ωy3 = −H
y2
3

=⇒ ωy3
= −

R1H

y2
3

,

Φ′ωyi =
Hyi
y3

=⇒ ωyi
=
R1Hyi
y3

=
R1H

′

y3
, i = 1, 2 .

Here and further we shall use notation H′ for any partial derivative Hyi , i = 1, 2. This

cannot cause any confusion since only one i ∈ {1, 2} participates in the calculation of Di.

ωy3y3
= −

R2ωy3
H

y2
3

+ 2
R1H

y3
3

=
R1H

y4
3

(R2H + 2y3) ,

ωy3yi
= −

R2ωyi
H

y2
3

−
R1H

′

y2
3

= −
R1H

′

y3
3

(R2H + y3) ,

ωyiyi
=
R2ωyi

H

y3
+
R1H

′

y3
=
R1

y2
3

(R2(H′)2 + y3H
′′) .

Now we pass to the calculation of derivatives of M = y3ω
p:

My3
= py3ω

p−1ωy3
+ ωp ,

Myi
= py3ω

p−1ωyi
;
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My3y3
= py3ω

p−1ωy3y3
+ 2pωp−1ωy3

+ p(p− 1)y3ω
p−2ω2

y3

=
pωp−2R1H

2

y3
3

[ωR2 + (p− 1)R1] , (2.10)

My3yi
= py3ω

p−1ωy3yi
+ pωp−1ωyi

+ p(p− 1)y3ω
p−2ωy3

ωyi

= −
pωp−2R1HH

′

y2
3

[ωR2 + (p− 1)R1] ,

Myiyi
= py3ω

p−1ωyiyi
+ p(p− 1)y3ω

p−2ω2
yi

=
pωp−2R1

y3

(
[ωR2 + (p− 1)R1](H′)2 + ωy3H

′′
)
. (2.11)

This yields

Di = My3y3
Myiyi

−M2
y3yi

=
p2ω2p−3R2

1H
2H′′

y3
3

[ωR2 + (p− 1)R1] . (2.12)

Lemma 16. If αi, βi ∈ {±1} and H(y1, y2) = G(α1y1 + α2y2, β1y1 + β2y2), then

H′′ =


4Gz1z2 , αj = βj

0, αj = −βj.

Consequently, in Case (12), signH′′ = − sign(p− 2).

Proof.

H′′ =
∂2

∂y2
i

G(α1y1 + α2y2, β1y1 + β2y2)

= α2
i Gz1z1

+ 2αiβiGz1z2
+ β2

i Gz2z2

= Gz1z1
+Gz2z2

± 2Gz1z2
,
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where the “+” sign has to be taken if the coefficients in front of yi are equal and the “−”

sign in the opposite case.

The derivatives of G are simple:

Gz1 = p(z1 + z2)p−2[z1 − (p− 2)z2
]
,

Gz2 = −p(p− 1)z2(z1 + z2)p−2 ;

Gz1z2
= p(p− 1)(z1 + z2)p−3[z1 − (p− 3)z2

]
,

Gz1z2
= −p(p− 1)(p− 2)z2(z1 + z2)p−3 ,

Gz2z2
= −p(p− 1)(z1 + z2)p−3[z1 + (p− 1)z2

]
.

Note that Gz1z1
+Gz2z2

= 2Gz1z2
, and therefore,

H′′ =


4Gz1z2 , αj = βj

0, αj = −βj

Now in Case (12), we must choose α1 = 1, α2 = 1, β1 = 1 and β2 = −1 for H

to match how the implicit solution was defined in terms of G in Proposition 12. Then

Gz1z2
= −p(p− 1)(p− 2)(y1 − y2)(2y1)p−3.

Remark 17. Let β :=
√
ω2 − τ2 from this point on. In Case (12), β > p − 1 in the sector

p−2
p y1 < y2 < y1. Equivalently, B > (τ2 + (p− 1)2)

p
2 in

p−2
p y1 < y2 < y1.
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This is an easy application of Proposition 12:

(β + 1)p−1[β − p+ 1] = G(β, 1) =
1

y3
G(y1 + y2, y1 − y2)

= (2y1)p−1[−(p− 2)y1 + py2] > 0.

Before we can compute the signs of My1y1 ,My2y2 ,My3y3 and D1 we need a technical

lemma.

Lemma 18. If 1 < p <∞ and τ ∈ R, then

g(β) := −p(p− 2)ωβ−3(β + 1)p−3[(τ2 + p− 1)β2 − τ2(p− 3)β + τ2]

satisfies sign g(β) = − sign(p− 2) in Case (12).

Proof. The only terms controlling the sign in g are (p− 2) and the quadratic part, which we

will denote q(β). So all that is needed is to simply determine the sign of q. The discriminant

of q is τ2(p− 1)[τ2(p− 5)− 4].

If p ≤ 5, then the discriminant of q is negative and so q(β) > 0. If p > 5 and τ2(p−5)−4 <

0, then q(β) > 0 once again.

The only case left to consider is if p > 5 and τ2(p− 5)− 4 ≥ 0. The zeros of q are given

by β =
τ2(p−3)±|τ |

√
p−1

√
τ2(p−5)−4

2(τ2+p−1)
. Let β1, β2 be the zeros such that β2 ≥ β1. We

claim that max{p− 1, β2} = p− 1. Indeed, p− 1− β2 > 0

⇐⇒ (p+ 1)τ2 + 2(p− 1)2 > |τ |
√
p− 1

√
τ2(p− 5)− 4

⇐⇒ 4(p− 1)4 + 4τ2(p+ 1)(p− 1)2 + τ4(p+ 1)2 > τ2(p− 1)(τ2(p− 5)− 4)
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⇐⇒ (p− 1)4 + τ2p2(p− 1) + τ4(2p− 1) > 0,

which is obviously true for all τ ∈ R. Now that we have proven the claim, recall that β > p−1,

as shown in Remark 17. Therefore, β > β2, so q(β) > 0 in this case.

Lemma 19. D1 > 0 in Case (12) for all τ ∈ R.

Proof. We use the partial derivatives of G computed in the proof of Lemma 16 to make the

computations of Φ′ and Φ′′ easier.

Φ(ω) = G(β, 1)

Φ′(ω) = pω[β + 1]p−2[1− (p− 2)β−1] (2.13)

Φ′′(ω) = p(β + 1)p−2[1− (p− 2)β−1] + p(p− 2)ω2β−1[β + 1]p−3[1− (p− 2)β−1]

+ p(p− 2)ω2β−3[β − 1]p−2

Λ = (p− 1)Φ′ − ωΦ′′

= p(p− 2)ωβ−1(β + 1)p−2[1− (p− 2)β−1]

− p(p− 2)ω3β−3(β + 1)p−3[β(β − p+ 2) + β + 1]

= p(p− 2)ωβ−2(β + 1)p−3[β − p+ 2]{β(β + 1)− ω2} − p(p− 2)ω3β−3(β + 1)p−2

= p(p− 2)ωβ−3[β(β − p+ 2)(β − τ2)− ω2(β + 1)]

= −p(p− 2)ωβ−3(β + 1)p−3[(τ2 + p− 1)β2 − τ2(p− 3)β + τ2]

So we can see that sign Λ = sign g(β) = − sign(p− 2), by Lemma 18. Therefore, signD1 =

signH′′ sign Λ = [− sign(p− 2)]2 by (2.12) and Lemma 16.

Since D1 > 0, then all that remains to be checked, for the restrictive concavity of M, is
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that Myiyi (for i = 1, 2) and My3y3 have the appropriate signs. But, it turns out that only

for 2 < p <∞, will these have the appropriate signs.

Lemma 20. signMy1y1 = signMy2y2 = signMy3y3 = − sign(p − 2) in Case (12) for all

τ ∈ R. Therefore, M is a partial Bellman function candidate for 2 < p < ∞ but not for

1 < p < 2, since it does not satisfy the required restrictive concavity.

Proof. By (2.10),

My3y3 =
pωp−2R2

1H
2

y3
3

[
Λ

Φ′

]

Remark 17 gives Φ′ > 0. From Lemma 18, signMy3y3 = sign Λ = sign g(β) = − sign(p− 2).

By (2.11), for i = 1or 2,

Myiyi =
pωp−2R1

y3

[
(ωR2 + (p− 1)R1)(H′)2 + ωy3H

′′
]

=
pωp−2

y3(Φ′)3
[
Λ(H′)2 + ωy3H

′′(Φ′)2
]
,

giving signMy2y2 = − sign(p− 2).

The previous two lemmas established that the partial Bellman function candidate, from

Case (12) satisfies the restrictive concavity property, for 2 < p <∞. The candidate was con-

structed using the remaining Bellman function properties, so it is in fact a partial candidate.

Now we will turn our attention to Case (2). As it turns out, Case (22) also gives a partial

Bellman function candidate, which, as luck would have it, is the missing half of the partial

Bellman candidate just constructed.
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2.2.1.2 Case (22) for 2 < p <∞

We can obtain a Bellman candidate from Case (2) without having to separately fix y1 or y2.

Let us compute the solution in this case.

-

6

y1

U

y2

y3

-

6

y1

U

−y2

y3

Figure 2.3: Sample characteristic of Monge-Ampère solution in Case (21)

-

6

y2−y1

U

y1

y3

Figure 2.4: Sample characteristic of Monge-Ampère solution for Case (22)

Lemma 21. In Case (2) we obtain

M(y) = (1 + τ2)
p
2 [y2

1 + 2γy1y2 + y2
2]
p
2 + c[y3 − (y1 − y2)p] (2.14)

as a Bellman function candidate, where c > 0 is some constant and γ = 1−τ2

1+τ2 .
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Proof. In Case (2), on the characteristic yidti + y3dt3 + dt0 = 0, y1 and y2 are fixed.

Furthermore, on the characteristic, t0, ti, t3 are fixed, so we have

M(y) = yiti + y3t3 + t0

= (yiti + t0) + y3t3

= c1(y1, y2) + c2(y1, y2)y3

Then My3y3 = 0 and My3yi = ∂yic2. Recall that Di ≥ 0 by Remark 6, so ∂yic2(y1, y2) = 0.

This implies that c2 is a constant. Using the boundary data from Proposition 7 gives

((y1 +y2)2 +τ2(y1−y2)2)
p
2 = M(y1, y2, (y1−y2)p) = c1(y1, y2)+c2(y1−y2)p. Solving for

c1(y1, y2) gives the result. To see that c2 > 0, just notice that as y3 →∞,M(y)→∞.

It is not possible to determine if this Bellman function candidate satisfies restrictive

concavity, unless we know the value of the constant c in Lemma 21. This constant can be

computed by using the fact that (2.14) must agree with the partial candidate in Case (12)

at y2 =
p−2
p y1, if (2.14) is in fact a candidate itself.

Lemma 22. In Case (22), the value of the constant in Lemma 21 is c = ((p − 1)2 + τ2)
p
2

for 2 < p <∞.

Proof. If M(y) = (1 + τ2)
p
2 [y2

1 + 2γy1y2 + y2
2]
p
2 + c[y3− (y1− y2)p] (where γ = 1−τ2

1+τ2 ) is to

be a candidate, or partial candidate, then it must agree at y2 =
p−2
p y1, with the solution M

given implicitly by the relation G(y1 + y2, y1 − y2) = y3G(
√
ω2 − τ2, 1), from Proposition

12. At y2 =
p−2
p y1,

(√
ω2 − τ2 + 1

)p−1[√
ω2 − τ2 − p+ 1

]
= G

(√
ω2 − τ2, 1

)
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=
1

y3
(2y1)p−1[−(p− 2)y1 + (p− 2)y1] = 0.

Since
√
ω2 − τ2 + 1 6= 0,

√
ω2 − τ2 = p− 1, which implies ω = ((p− 1)2 + τ2)

1
2 . So,

((p− 1)2 + τ2)
p
2y3 = ωpy3

= M(y1,
p− 2

p
y1, y3)

=

[(
2
p− 1

p
y1

)2
+ τ2

(
2

p
y1

)2
]p

2
+ c

[
y3 −

(
2

p
y1

)p]
.

Now just solve for c.

2.2.1.3 Gluing together partial candidates from Cases (12) and (22)

It turns out that the Bellman function candidate obtained from Case (22) is only valid on

part of the domain Ξ+, since it does not remain concave throughout (for example at or

near (y1, y1, y3)). As luck would have it, the partial candidate has the necessary restrictive

concavity on the part of the domain where the candidate from Case (12) left off; i.e. in

−y1 < y2 <
p−2
p y1. This means that we can glue together the partial candidate from Cases

(12) and (22) to get a candidate on Ξ+ for 2 < p <∞. The characteristics for this solution

can be seen in Figure 2.5.

Proposition 23. For 2 < p <∞, γ =
1− τ2

1 + τ2
and τ ∈ R, the solution to the Monge-Ampère

equation is given by

M(y) = (1 + τ2)
p
2 [y2

1 + 2γy1y2 + y2
2]
p
2 + ((p− 1)2 + τ2)

p
2 [y3 − (y1 − y2)p]
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-

6

y2−y1 p−2
p y1

y1

y3

�
�
�
�
�
��

Figure 2.5: Characteristics of Bellman candidate for 2 < p <∞

when −y1 < y2 ≤
p−2
p y1 and is given implicitly by

G(y1 + y2, y1 − y2) = y3G(
√
ω2 − τ2, 1) when

p−2
p y1 ≤ y2 < y1, where G(z1, z2) =

(z1 + z2)p−1[z1 − (p − 1)z2] and ω =

(
M(y)
y3

)1
p

. This solution satisfies all properties of

the Bellman function.

We already know that the implicit part of the solution has the correct restrictive concavity

property of the Bellman function, as shown in Section 2.2.1.1. However, the restrictive

concavity still needs to be verified for the explicit part. Since the explicit part of the solution

satisfies My3yi = My3y3 = 0, Di = 0 for i = 1, 2. So all that remains to be verified for the

restrictive concavity of the explicit part is checking the sign of Myiyi, for i = 1, 2. Observe

that the explicit part can be written as

M(y) = [(y1 + y2)2 + τ2(y1 − y2)2]
p
2 + Cp,τ [y3 − (y1 − y2)p]. (2.15)

It is easy to check that My2y2 ≤My1y1 on −y1 < y2 ≤
p−2
p y1 for 2 < p <∞. So we only

need to find the largest range of τ ’s such that My1y1 ≤ 0.

Lemma 24. In Case (22),My1y1 ≤ 0 on −y1 < y2 ≤
p−2
p y1 for all τ ∈ R.
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Proof. Changing coordinates back to x will make the estimates much easier. So we would

like to show that, on 0 ≤ x2 ≤ (p− 1)x1, we have,

My1y1 ≤ 0, (2.16)

where Cp,τ = ((p− 1)2 + τ2)
p
2 and 1

pMy1y1 =

(p− 2)(x2
2 + τ2x2

1)
p−4

2 (x2 + τ2x1)2 + (1 + τ2)(x2
2 + τ2x2

1)
p−2

2 − (p− 1)Cp,τ x
p−2
1 .

First, consider 4 ≤ p <∞. If p 6= 4, then showing (2.16) is equivalent to

(p− 2)(p− 1 + τ2)2 + (1 + τ2)((p− 1)2 + τ2)− (p− 1)((p− 1)2 + τ2)2 ≤ 0.

Using the fact that (p− 1 + τ2)2 ≤ ((p− 1)2 + τ2)2, it suffices to show

(p− 2)((p− 1)2 + τ2) + 1 + τ2 ≤ (p− 1)((p− 1)2 + τ2)⇐⇒ 1 ≤ (p− 1)2.

4So we have verified that the estimate is true for all τ. Let s =
x2
x1
, then (2.16) simplifies to

showing,

F (s) = (p− 2)(s+ τ2)2 + (1 + τ2)(s2 + τ2)− Cp,τ (p− 1)(s2 + τ2)
4−p

2 ≤ 0,

where 0 ≤ s ≤ p−1. For p = 4, F is a quadratic function that is increasing on (
−2τ2

τ2 + 3
, p−1).

Since F (3) ≤ 0, F (s) ≤ 0 on (0, 3).

Now we will consider 2 ≤ p < 4. Note that F (s) = 0 at p = 2, so we can assume that
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p 6= 2. Breaking up the domain of F will make things easier. For s ∈ (1, p− 1), we have the

following estimate, (s+ τ2)2 ≤ (s2 + τ2)2. Let t = s2 + τ2. Then

1

t
F (s) ≤ (p− 2)t+ 1 + τ2 − Cp,τ (p− 1)t

2−p
2 := g1(t).

Observe that g1 is increasing on 1 + τ2 ≤ t ≤ (p − 1)2 + τ2 and g1((p − 1)2 + τ2) ≤ 0.

Therefore, F (s) ≤ 0 on (1, p− 1).

Now we will show that F (s) ≤ 0, for s ∈ (0, 1). Let r = τ2 > 0. Since (s+ r)2 ≤ (1+ r)2,

it suffices to show

(p− 2)(1 + r)2 + (1 + r)(s2 + r) ≤ (p− 1)((p− 1)2 + r)p/2(s2 + r)(4−p)/2

⇐⇒ (1 + r)[s2 + (p− 1)r + p− 2] ≤ (p− 1)((p− 1)2 + r)p/2(s2 + r)(4−p)/2

⇐⇒ H(s) := log(1 + r) + log[s2 + (p− 1)r + p− 2]− log(p− 1)

− p

2
log((p− 1)2 + r)− 4− p

2
log(s2 + r) ≤ 0

H′(s) ≥ 0 and H(1) ≤ 0 will imply H ≤ 0 on (0, 1). H′(s) ≥ 0 ⇐⇒ As2 + B ≥ 0, where

A = p − 2 and B = 2r − (4 − p)[(p − 1)r + p − 2]. For this we simply need to check the

conditions under which B ≥ 0. It is easy to see that

B ≥ 0⇐⇒ r ≥ (4− p)(p− 2)

2− (4− p)(p− 1)
,

which is satisfied for all r ≥ 0, if p ∈ [2, 3]. Checking that H(1) ≤ 0 is easy:

H(1) =
p

2
log

(
1 + r

(p− 1)2 + r

)
≤ 0
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⇐⇒ 1 ≤ (p− 1)2,

which is obviously true for all 2 ≤ p ≤ 3 (or better yet for all p ≥ 2, but we don’t have

the derivative estimate for that large range of p’s). Therefore, F (s) ≤ 0 for s ∈ (0, 1) and

2 ≤ p ≤ 3.

Let us now show that F (s) ≤ 0, for s ∈ (0, 1) and 3 < p < 4.

F (s) ≤ (p− 2)(1 + r)2 + (1 + r)(1 + r)− (p− 1)(4 + r)p/2r(4−p)/2 ≤ 0

⇐⇒ (1 + r)2 ≤ (4 + r)p/2r(4−p)/2

⇐⇒ 4 log(1 + r)− 4 log r ≤ p[log(4 + r)− log r]

⇐⇒ p ≥ 4 log(1/r + 1)

log(4/r + 1)
:= K(r)

Observe that lim
r→0+ K(r) = 4 and that K decreases rapidly to limr→∞K(r) = 1. Let

us find where K(r) = 3. This reduces to the equation

8r3 + 42r2 + 60r − 1 = 0,

which has a positive zero of r ≈ 0.0165. Therefore, K(r) ≤ p, for all r ≥ 0.02. This gives us

F (s) ≤ 0, for s ∈ (0, 1), 3 < p < 4 and τ2 ≥ 0.02.

The proof is finished except that we still need to show that F (s) ≤ 0, for s ∈ (0, 1), with

τ2 ≤ 0.02 and p ∈ (3, 4). We will now proceed to break (0, 1) into (0,
1− τ2

2
) ∪ (

1− τ2

2
, 1)

and show that F (s) ≤ 0 on each piece separately. Though we only need the estimate for

τ2 ≤ 0.02, the estimates below work for |τ | ≤ 1.
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For s ∈ (0,
1− τ2

2
), we have the estimate (s+ τ2)2 ≤ s2 + τ2. Let t = s2 + τ2. Then

1

t
F (s) ≤ p− 1 + τ2 − Cp,τ (p− 1)t

2−p
2 := g2(t).

Since g2 is increasing on
(
τ2,

(1− τ2
)2

4
+ τ2) and since g2

((1− τ2)2

4
+ τ2

)
≤ 0, F (s) ≤ 0

on
(

0,
1− τ2

2

)
.

All that remains is to show that F (s) ≤ 0 on (
1− τ2

2
, 1), for p ∈ (3, 4).

1

p− 1
F (s) ≤ (1 + τ2)2 − ((p− 1)2 + τ2)

p
2

(
(1− τ2)2

4
+ τ2

)4−p
2
≤ 0

⇐⇒ 4
4−p

2 (1 + τ2)2 ≤ ((p− 1)2 + τ2)
p
2 ((1− τ2)2 + 4τ2)

4−p
2

⇐⇒ 24−p(1 + τ2)p−2 ≤ ((p− 1)2 + τ2)
p
2

Now we perform the second order Taylor expansion of the two terms involving p and τ and

obtain

24−p[1 + (p− 2)τ2 +
1

2
(p− 2)(p− 3)ξ

p−4
2 τ4]

≤ 1 +
p

2
((p− 1)2 + τ2 − 1) +

p

8
(p− 2)((p− 1)2 + τ2 − 1)2ξ

p−4
2

1 ,

where 1 ≤ ξ2 ≤ 2 and 4 ≤ ξ1 ≤ 10. Using these estimates of ξ1 and ξ2 and considering

p ∈ [3, 4], it suffices to show

2 + 4τ2 + τ4 ≤ 1 +
3

2
(3 + τ2) +

3

8
(3 + τ2)2

3

10
⇐⇒ −71τ4 − 146τ2 + 361 ≥ 0,
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which is obviously true for all |τ | ≤ 1 and p ∈ [3, 4]. So we have shown that F (s) ≤ 0 on

(
1− τ2

2
, 1) for p ∈ [3, 4] and |τ | ≤ 1. Thus, F (s) ≤ 0, for s ∈ [0, p− 1] and 2 < p < 4, which

completes the proof.

We have now verified that the explicit part of the Bellman function candidate, from

Case (22), has the appropriate restrictive concavity. So we have proven Proposition 23, by

Lemmas 19, 20 and 24. Now that we have a Bellman candidate for 2 < p <∞, we will turn

our attention to p-values in the dual range 1 < p < 2.

2.2.2 The Bellman function candidate for 1 < p < 2

In order to get a Bellman function candidate for 1 < p < 2 we just need to glue together

candidates from Cases (22) and (32) in almost the same way as we did for 2 < p < ∞ in

Section 2.2.1. Refer to Addendum 1 (Section 2.5) for full details.

-

6

y2−y1 2−p
p y1

y1

y3

Figure 2.6: Characteristics of Bellman candidate for 1 < p < 2.

Proposition 25. Let 1 < p < 2 and γ =
1− τ2

1 + τ2
. If τ2 ≤ 1

2p−1 , then a solution to the

Monge-Ampère equation is given by

M(y) = (1 + τ2)
p
2 [y2

1 + 2γy1y2 + y2
2]
p
2 +

(
1

(p−1)2
+ τ2

)p
2

[y3 − (y1 − y2)p]
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when
2−p
p y1 ≤ y2 < y1

and if τ2 ≤ p∗ − 1, then the solution is given implicitly by

G(y1−y2, y1+y2) = y3G(1,
√
ω2 − τ2) when −y1 < y2 ≤

2−p
p y1, where ω =

(
M(y)
y3

)1
p
.

This solution satisfies all of the properties of the Bellman function (once we restrict the τ -

values to the smaller set between the two restrictions above).

Most of the remaining cases do not yield a Bellman function candidate. If we fix y2, then

the Monge-Ampère solution from Cases (1) and (3) do not satisfy the restrictive concavity

needed to be a Bellman function candidate. Case (2) yields the same partial solution if we

first fix y1 or y2, since restrictive concavity is only valid on part of the domain. So, all

that remains is Case (4). However, we do not know whether or not Case (4) gives a Bellman

function candidate. For τ = 0, it was shown in [37] that Case (4) does not produce a Bellman

function candidate, since some simple extremal functions give a contradiction to linearity of

the Monge-Ampère solution on characteristics. However, for τ 6= 0 these extremal functions

only work as a counterexample for some p-values and some signs of the martingale transform.

Case (4) could give a solution throughout Ξ+ or could yield a partial solution that would

work well with the characteristics from Case (21). Since Case (4) does not provide a Bellman

candidate for τ = 0, we expect the same for small τ. The picture probably changes most

drastically for large τ. But it does not matter, since we will now show that our Bellman

candidate is actually the Bellman function (which we would have to check anyways because

of the added assumption). The details for the remaining cases that do not yield a Bellman

function candidate are in Section 2.6.
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2.3 Monge-Ampère solution is the Bellman function

We will now show that the Monge-Ampère solution obtained in Proposition 23 and 25 is

actually the Bellman function. To this end, let us revert back to the x-variables. We

will denote the Bellman function candidate as Bτ and use Bτ to denote the true Bellman

function. Extending the function G on part of Ω+ to Uτ on all of Ω, appropriately, makes

it possible to define the solution in terms of a single relation.

Definition 26. Let v(x1, x2) := vp,τ (x1, x2) = (τ2|x1|2+ |x2|2)
p
2−((p∗−1)2+τ2)

p
2 |x1|p,

u(x1, x2) := up,τ (x1, x2) = p(1− 1
p∗ )p−1

(
1 + τ2

(p∗−1)2

)p−2
2

(|x1|+ |x2|)p−1[|x2|−(p∗−

1)|x1|] and

U(x1, x2) := Up,τ (x1, x2) =


v(x1, x2) : |x2| ≥ (p∗ − 1)|x1|

u(x1, x2) : |x2| ≤ (p∗ − 1)|x1|.

for 1 < p < 2. For 2 < p <∞ we interchange the two pieces in U.

Remark 27. Wherever B,U, u and v are considered, we are assuming that if 1 < p < 2, then

τ2 ≤ 1

2p− 1
and if 2 ≤ p <∞, then τ ∈ R.

Proposition 28. For 1 < p < 2 and τ2 ≤ 1

2p− 1
or 2 < p < ∞ and τ ∈ R the Bellman

function candidate is the unique positive solution given by

U(x1, x2) = U

(
x

1
p
3 ,

√
B

2
p
τ − τ2x

2
p
3

)
.

Furthermore, U is C1-smooth on Ω.
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Proof. First consider 2 ≤ p <∞. It is clear that

U(x1, x2) = U

(
x

1
p
3 ,

√
B

2
p
τ − τ2x

2
p
3

)
, (2.17)

by comparing the solution obtained in Proposition 23 and using the symmetry property in

Proposition 7. The constant αp,τ = p
(
1− 1

p∗
)p−1

(
1 +

τ2

(p∗ − 1)2

)p−2
2

was determined so

that Ux = Uy at |y| = (p∗ − 1)|x|. The partial derivatives are given by,

ux1 = αp,τ [(p− 1)x′1(|x1|+ |x2|)
p−2(|x2| − (p∗ − 1)|x1|)− (p∗ − 1)x′1(|x1|+ |x2|)

p−1],

vx1 = pτ2x1(τ2|x1|
2 + |x2|

2)
p−2

2 − px′1((p∗ − 1)2 + τ2)
p
2 |x1|

p−1,

ux2 = αp,τ (p− 1)x′2(|x1|+ |x2|)
p−2(|x2| − (p∗ − 1)|x1|) + αp,τ x

′
2(|x1|+ |x2|)

p−1,

vx2 = px2(τ2|x1|
2 + |x2|

2)
p−2

2 ,

where x′1 =
x1
|x1|

and x′2 =
x2
|x2|

. U is C1-smooth, except possibly at gluing and symmetry

lines. It is easy to verify that ux is continuous at {x1 = 0}, Ux1 and Ux2 are continuous at

{|x2| = (p∗ − 1)|x1|} and vx2 is continuous at {x2 = 0}. This proves that U is C1-smooth

on Ω.

Observe that Ux2 > 0 for x2 6= 0 and Ux1 < 0 for x1 6= 0. This is enough to show that

Bτ is the unique positive solution to (2.17). Indeed, if x ∈ Ω such that |x1| = x

1
p
3 , then√

B

2
p
τ − τ2x

2
p
3 = |x2| by the Dirichlet boundary conditions. This gives us (2.17) uniquely at

Bτ (x). Fix x1, such that |x1| < x

1
p
3 . Then U

x1
p
3 ,

√
B

2
p
τ − τ2x

2
p
3

 < U

x1,

√
B

2
p
τ − τ2x

2
p
3

 .
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Since x1 is fixed,

√
B

2
p
τ − τ2x

2
p
3 > |x2|, so U

x1,

√
B

2
p
τ − τ2x

2
p
3

 strictly decreases to

U(x1, x2), as

√
B

2
p
τ − τ2x

2
p
3 decreases to |x2|, giving us a unique Bτ (x) for which (2.17)

holds.

Now consider 1 < p < 2. U is C1-smooth on Ω, since vx1 is continuous at {x1 = 0}, ux2

is continuous at {x2 = 0} and Ux1 and Ux2 are continuous at {|x2| = (p∗ − 1)|x1|}. This is

easily verified since the partial derivatives are computed above (just switch the two pieces of

each function). Observe that for x1 6= 0 and x2 6= 0, Ux1 < 0 and for x2 6= 0, Ux2 > 0. Then

the argument above showing U(x1, x2) = U

x1
p
3 ,

√
B

2
p
τ − τ2x

2
p
3

 uniquely determines

Bτ also holds for this range of p-values as well, except maybe at x1 = x2 = 0. Suppose

U(0, 0) = U

x1
p
3 ,

√
B

2
p
τ − τ2x

2
p
3

 . Then Bτ (x) = ((p∗ − 1)2 + τ2)
p
2x3. So Bτ (x) is

uniquely determined by the fixed x-value.

Corollary 29. Bτ is continuous in Ω, for τ2 ≤ 1
2p−1 and 1 < p < 2 or τ ∈ R and

2 ≤ p <∞.

6
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Figure 2.7: Location of Implicit (I) and Explicit (E) part of Bτ for 2 ≤ p <∞.

Proof. In this proof only we will revert back to the notation Up,τ , rather than U, to make
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clear the distinction when τ = 0 or τ 6= 0. We only consider 2 < p < ∞ as the dual range

is handled identically. By Proposition 28, we have that Bτ is the unique positive solution

to (2.17). Since this is true for all τ ∈ R, B0 =
(
B

2
p
τ − τ2x

2
p
3

)p
2 on |x2| ≥ (p∗ − 1)|x1|,

because Up,τ =

(
1 + τ2

(p∗−1)2

)p−2
2

Up,0. Equivalently, we have

Bτ =

B 2
p
0 + τ2x

2
p
3


p
2
. (2.18)

Since B0 was shown to be continuous in [37] (pg. 26), Bτ is also continuous on |x2| ≥

(p∗ − 1)|x1|, using the relation. This takes care of the implicit part of Bτ . The explicit part

of Bτ is clearly continuous on |x2| ≤ (p∗ − 1)|x1|.

Lemma 30. Let τ2 ≤ 1
2p−1 and 1 < p < 2 or τ ∈ R and 2 ≤ p < ∞. Then, Bτ

∣∣
L is

C1-smooth on Ω, where L is any line in Ω.

Proof. Since Bτ
∣∣
L is C2-smooth on Ω+, all that remains to be checked is the smoothness

at the gluing and symmetry lines; i.e., at {x1 = 0}, {x2 = 0} and {|x2| = (p∗ − 1)|x1|}.

Let L = L(t), t ∈ R, be any line in Ω passing through any of the planes in question, such

that L(0) is on the plane. Now plug L(t) into (2.17) and differentiate with respect to t. Let

t→ 0+ and t→ 0− and equate the two relations. This gives

d

dt
Bτ (L(t))

∣∣
t=0− =

d

dt
Bτ (L(t))

∣∣
t=0+ .

Proposition 31. (Restrictive Concavity) Let 1 < p < 2 and τ2 ≤ 1
2p−1 or 2 ≤ p < ∞

and τ ∈ R. Suppose x± ∈ Ω such that x = α+x+ + α−x−, α+ + α− = 1. If |x+
1 − x

−
1 | =

|x+
2 − x

−
2 |, then Bτ (x) ≥ α+Bτ (x+) + α−Bτ (x−).
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Proof. Recall that Propositions 23 and 25, together with the symmetry property of Bτ ,

establish this result everywhere, except at {x1 = 0}, {x2 = 0} and {|x2| = (p∗ − 1)|x1|}.

Let f(t) = Bτ
∣∣
L(t), where L is any line in Ω, such that L(0) ∈ {x1 = 0}, {x2 = 0} or

{|x2| = (p∗ − 1)|x1|}. Since f ′′ < 0 for t < 0 and t > 0 and f is C1-smooth (by Lemma 30),

f is concave.

Proposition 32. Let 1 < p < ∞. If a function B̃ has restrictive concavity and satisfies

the Dirichlet estimate B̃τ (x1, x2, |x1|p) ≥ (τ2x2
1 + x2

2)
p
2 , then B̃τ ≥ Bτ . In particular,

Bτ ≥ Bτ , for τ2 ≤ 1
2p−1 and 1 < p < 2 or τ ∈ R and 2 ≤ p <∞.

Proof. This was proven in [37] for B0 (Lemma 2 on page 29). The same proof will apply

here to Bτ .

Proposition 33. For τ2 ≤ 1
2p−1 and 1 < p < 2 or τ ∈ R and 2 ≤ p <∞, Bτ ≤ Bτ .

Proof. For 1 < p < 2 there is a direct proof, which will be discussed first. By (2.18) we

know that B0 =
(
B

2
p
τ − τ2x

2
p
3

)p
2 on {|x2| ≤ (p∗ − 1)|x1|}. Consider, B̃0 =

(
B

2
p
τ − τ2x

2
p
3

)p
2 .

It suffices to show that B0 ≤ B̃0. But, B0 = B0 (as Burkholder showed), so without the

supremum’s we can reduce to simply showing

〈|g|p〉
2
p
I + τ2〈|f |p〉

2
p
I ≤ 〈(τ

2|f |2 + |g|2)
p
2 〉I .

Apply Minkowski’s inequality:
∥∥∫
I (A,C)

∥∥
l
2
p
≤
∫
I ‖(A,C)‖

l
2
p
. Choosing A = |g|p and

C = |τf |p proves the result. So we have shown that Bτ ≤ Bτ on {|x2| ≤ (p∗ − 1)|x1|}.

Now we would like to show that Bτ ≤ Bτ on {|x2| ≥ (p∗−1)|x1|}. Let H1(x1, x2, x3) =

Bτ (x1, x2, x3)−Bτ (0, 0, 1)x3. Lemma 38, in the next section, proves that H1(x1, x2, ·) is an

increasing function starting at H1(x1, x2, |x1|p) = vτ (x1, x2) and increasing to Ũp,τ (x, y) :=
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supt≥|x|p{Bτ (x, y, t)−Bτ (0, 0, 1)t}. The same proof works for

H2(x1, x2, x3) = Bτ (x1, x2, x3)− Bτ (0, 0, 1)x3.

So

H2(x1, x2, x3) ≥ vτ (x1, x2) = Bτ (x1, x2, x3)−Bτ (0, 0, 1)x3.

Since Bτ (0, 0, 1) ≤ Bτ (0, 0, 1), Bτ ≤ Bτ on {|x2| ≥ (p∗ − 1)|x1|}.

Now we consider 2 < p < ∞. Let ε > 0 be arbitrarily small and consider the following

extremal functions

f(x) =


−c : 1 < x < ε

γf
(
t−ε

1−2ε

)
: ε < x < 1− ε

c : 1− ε < x < 1,

g(x) =


d− : 1 < x < ε

γg
(
t−ε

1−2ε

)
: ε < x < 1− ε

d+ : 1− ε < x < 1,

where c, d± and γ are defined so that f and g are a pair of test functions at (0, x2, x3). We

can use f and g to show, just as in [37] (Lemma 3, pg. 30), that

Bτ (0, x2, x3) ≤ Bτ (0, x2, x3). (2.19)

Now we need to take care of the estimate when x1 6= 0. Making a change of coordi-

nates from x to y we only need to consider y ∈ Ξ+, by the symmetry property of the

Bellman function and Bellman function candidate. So far we have that Mτ (y1, y1, y3) ≤

47



Mτ (y1, y1, y3) by (2.19). The Dirichlet boundary conditions give that M(y1, y2, (y1 −

y2)p) =M(y1, y2, (y1−y2)p). On any characteristic in {p−2
p y1 ≤ y2 ≤ y1}, see Figure 2.5,

Mτ is linear (since it is the Monge-Ampère solution) andMτ is concave (by Proposition 5).

Therefore, Mτ (y1, y2, y3) ≤Mτ (y1, y2, y3) on {p−2
p y1 ≤ y2 ≤ y1}. For the remaining part

of Ξ+, we can use the same proof as for 1 < p < 2 to get Mτ (y1, y2, y3) ≤ Mτ (y1, y2, y3)

on {−y1 ≤!y2 ≤
p−2
p y1}.

Now that we have proven B = B, we will mention another surprising fact.

Definition 34. We define Bl = Bl(x1, x2, x3) as the least restrictively concave majorant of

(x2
2 + τ2x2

1)
p
2 in Ω.

Proposition 35. For 1 < p < 2 and τ2 ≤ 1
2p−1 or 2 ≤ p < ∞ and τ ∈ R we have

B = B = Bl.

Proof. First we will show B ≥ Bl. By Minkowski’s inequality,

B(x1, x2, x3) = B(x1, x2, x3) ≥
∫

(|g|2 + τ2|f |2)
p
2 =

∫
‖(g, τf)‖p

l2
≥
∥∥∥∥∫ (g, τf)

∥∥∥∥p
l2

= (|〈g〉|2 + τ2|〈f〉|2)
p
2 = (x2

2 + τ2x2
1)
p
2 ,

proving the estimate.

Conversely, one can show that B ≤ Bl just as B ≤ B was shown in Proposition 32 (simply

apply the same argument to Bl using the restrictive concavity of this function).
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2.4 Proving the main result

Now that we have the Bellman function, the main result can be proven without too much

difficulty. But first, we will find another relationship between U and v. Quite surprisingly,

U is the least zigzag-biconcave majorant of v.

Definition 36. A function of (x, y) that is biconcave in (x+y, x−y) we call zigzag-biconcave.

Remark 37. For this section, while proving the main result, we will stop using (x1, x2, x3)

and (y1, y2, y3) coordinates to denote a rotation by π
4 . Definition 36 makes the rotation

clear and we can simply use (x, y, t) as the coordinates and relax the use of subscripts.

Lemma 38. Let 1 < p <∞ and Ũ(x, y) = supt≥|x|p{Bτ (x, y, t)−Bτ (0, 0, 1)t}. Fix (x, y).

The function H(x, y, t) = Bτ (x, y, t) − Bτ (0, 0, 1)t is increasing in t from H(x, y, |x|p) =

v(x, y) := (τ2|x|2 + |y|2)
p
2 − ((p∗ − 1)2 + τ2)

p
2 |x|p to Ũp,τ (x, y).

Proof. Recall that Bτ is continuous in Ω and for (x, y) fixed, Bτ (x, y, ·) is concave. Then

H(x, y, ·) is also concave. Since Ũp,τ (x, y) = supt≥|x|p{Bτ (x, y, t)− Bτ (0, 0, 1)t}, it either

increases to Ũ(x, y), or there exists t0 such that H(x, y, t0) = Ũ(x, y) and H is decreasing

for t > t0. If H is decreasing for t > t0, then H → −∞ as t→∞ by concavity. Then there

exists ε > 0 and t′ > t0 such that H(x, y, t′) < εt′. So we have, lim supt→∞
H(x,y,t)

t < −ε.

But,

lim
t→∞

H(x, y, t)

t
= lim
t→∞

Bτ
 x

t
1
p

,
y

t
1
p

, 1

−Bτ (0, 0, 1)

 = 0,

by continuity of Bτ at (0, 0, 1). This gives us a contradiction. Therefore, H(x, y, t) ≥ −εt,

for all t and all ε > 0; i.e., H is non-negative concave function on [|x|p,∞). So H(x, y, ·)

is increasing and H(x, y, |x|p) = vp,τ (x, y) by the Dirichlet boundary conditions of Bτ in

Proposition 7.
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Proposition 39. For 1 < p < 2 and τ2 ≤ 1
2p−1 or 2 ≤ p < ∞ and τ ∈ R, Up,τ (x, y) =

Ũp,τ (x, y).

Proof. Suppose 2 ≤ p <∞ and |y| ≥ (p− 1)|x|. Then

Ũ0(x, y) = lim
t→∞

(B0(x, y, t)−B0(0, 0, 1)t)

= lim
t→∞

B0

(
x

t1/p
,
y

t1/p
, 1

)
−B0(0, 0, 1)

1/t

=
d

du
B0(u1/px, u1/py, 1)

∣∣∣∣
u=0

.

Now we repeat the same steps and obtain

Ũτ (x, y) = lim
t→∞

(Bτ (x, y, t)−Bτ (0, 0, 1)t)

=
d

du

[(
B

2/p
0 (u1/px, u1/py, 1) + τ2

)p/2] ∣∣∣∣
u=0

=


B 2

p
0 (u

1
px, u

1
py, 1) + τ2


p−2

2
B

2−p
p

0 (u
1
px, u

1
py, 1)

d

du
B0(u

1
px, u

1
py, 1)

∣∣∣∣
u=0

=

(
1 +

τ2

(p− 1)2

)p−2
2

Ũ0(x, y) =

(
1 +

τ2

(p− 1)2

)p−2
2

U0(x, y),

where the last equality is by [15]. Therefore, Ũτ (x, y) = Uτ (x, y).

Now suppose |y| ≤ (p− 1)|x|. Looking at the explicit form of Bτ in the region, note that

Bτ (x, y, ·) is linear. So

Ũτ (x, y) = sup
t≥|x|p

{Bτ (x, y, t)−Bτ (0, 0, 1)t}
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= sup
t≥|x|p

{Bτ (x, y, 0)} = vτ (x, y) = Uτ (x, y).

We can apply the same proof to show that Ũτ (x, y) = Uτ (x, y) for 1 < p < 2.

Proposition 40. For τ2 ≤ 1
2p−1 and 1 < p < 2 or τ ∈ R and 2 ≤ p < ∞, U is the least

zigzag-biconcave majorant of v(x, y) = (y2 + τ2x2)
p
2 − ((p∗ − 1)2 + τ2)

p
2 |x|p.

Proof. Recall the following facts just proved in Lemma 38 and Proposition 39:

U(x, y) = sup
t:(x,y,t)∈Ω

{B(x, y, t)− B(0, 0, 1)t} ≥ v(x, y) = (y2 + τ2x2)
p
2 − Cpt,

where Cp = ((p∗ − 1)2 + τ2)
p
2 .

Suppose that w is a zigzag-biconcave function such that v ≤ w ≤ U. Then W (x, y, t) :=

w(x, y) + Cpt has restrictive concavity and W (x, y, t) ≥ v(x, y) + Cpt = (y2 + τ2x2)
p
2 .

Therefore, by Proposition 32, we have W ≥ B. So we have

w(x, y) = sup
t:(x,y,t)∈Ω

{W (x, y, t)− Cpt}

≥ sup
t:(x,y,t)∈Ω

{B(x, y, t)− Cpt} = U(x, y).

We now have enough machinery to easily prove the main result, in terms of the Haar

expansion of a R-valued Lp function.

Theorem 41. Let 1 < p < 2 and τ2 ≤ 1
2p−1 or 2 ≤ p < ∞ and τ ∈ R. Let f, g :

[0, 1] → R. If |〈g〉[0,1]| ≤ (p∗ − 1)|〈f〉[0,1]| and |(f, hJ )| = |(g, hJ )| for all J ∈ D, then〈
(τ2|f |2 + |g|2)

p
2
〉
[0,1] ≤

(
(p∗ − 1)2 + τ2)p2 〈|f |p〉[0,1], where ((p∗ − 1)2 + τ2) is the sharp

constant and p∗ − 1 = max
{
p− 1, 1

p−1

}
.
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Proof. Suppose that 2 ≤ p < ∞ and τ ∈ R. The proof relies on the fact that B = B

(Propositions 39 and 33) and U(x, y) = supt≥|x|p{B(x, y, t)− B(0, 0, 1)t} (Lemma 39 and

Proposition 38).

Since |y| ≤ (p∗ − 1)|x| on Ω,

U(x, y) = v(x, y) = (|y|2 + τ2|x|2)
p
2 − ((p∗ − 1)2 + τ2)

p
2 |x|p ≤ 0.

Then,

sup
t>|x|p

|y|≤(p∗−1)|x|

{B(x, y, t)−B(0, 0, 1)t} ≤ 0.

But, U(0, 0) = 0. Therefore

sup
t>|x|p

|y|≤(p∗−1)|x|

B(x, y, t)

t
= B(0, 0, 1) = ((p∗ − 1)2 + τ2)

p
2 . (2.20)

Observing the relationship B = B, gives the desired result.

For 1 < p < 2, τ2 ≤ 1
2p−1 and |y| ≤ (p∗ − 1)|x|,

U(x, y) = p

(
1− 1

p∗

)(
1 +

τ2

(p∗ − 1)2

)p−2
2

(|x|+ |y|)p−1[|y| − (p∗ − 1)|x|] ≤ 0,

so we have (2.20) by the same reasoning as for 2 ≤ p <∞.

Remark 42. Note that Minkowski’s inequality together with Burkholder’s original result

gives the same upper estimate for 2 ≤ p <∞.

Indeed, if f ∈ Lp[0, 1] and g is the corresponding martingale transform, then Minkowski’s
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inequality gives,

‖g2 + τ2f2‖
p
2

L
p
2
≤ (‖g2‖

L
p
2

+ ‖τ2f2‖
L
p
2

)
p
2 = (‖g‖2Lp + ‖τf‖2Lp)

p
2

≤ ‖f‖p
Lp

((p∗ − 1)2 + τ2)
p
2 .

This is very surprising in the sense that the “trivial” constant
(
(p∗ − 1)2 + τ2)p2 is

actually the sharp constant.

Now we will prove the main result for Hilbert-valued martingales. The same ideas can

be used to extend the previous result to Hilbert-valued Lp-functions as well. Let H be a

separable Hilbert space with ‖ · ‖H as the induced norm.

Theorem 43. Let 1 < p <∞, (W,F ,P) be a probability space and {fk}k∈Z+ , {gk}k∈Z+ :

W → H be two H-valued martingales with the same filtration {Fk}k∈Z+ . Denote dk =

fk − fk−1, d0 = f0, ek = gk − gk−1, e0 = g0 as the associated martingale differences. If

‖ek(ω)‖H ≤ ‖dk(ω)‖H, for all ω ∈ W and all k ≥ 0, then we have the following estimate

∥∥∥∥( n∑
k=0

ek, τ

n∑
k=0

dk

)∥∥∥∥
Lp(W,H2)

≤
(
(p∗ − 1)2 + τ2)p2∥∥∥∥ n∑

k=0

dk

∥∥∥∥
Lp(W,H)

,

with
(
(p∗ − 1)2 + τ2)p2 as the best possible constant for and τ2 ≤ 1

2p−1 and 1 < p < 2 or

τ ∈ R and 2 ≤ p <∞, where p∗ − 1 = max{p− 1, 1
p−1}.

In the theorem, “best possible” constant means that if Cp,τ < ((p∗ − 1)2 + τ2)
1
2 , then

for some probability space (W,G, P ) and a filtration F , there exists H-valued martingales
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{f}k and {g}k, such that

∥∥(gk, τfk)∥∥Lp([0,1],H2)
> Cp,τ

∥∥fk∥∥Lp([0,1],H) .

Proof. We will prove the result for 2 ≤ p < ∞, since the result for 1 < p < 2 is similar.

Replace | · | with ‖ · ‖H, in Up,τ . Let fn =
∑n
k=0 dk and gn =

∑n
k=0 ek. Recall that

U := Up,τ is the least zigzag-biconcave majorant of v := vp,τ . As in [16] (pages 77-79),

Up,τ (x+ h, y + k) ≤ Up,τ (x, y) + <(∂xUp,τ , h) + <(∂yUp,τ , k), (2.21)

for all x, y, h, k ∈ H, such that |k| ≤ |h| and ‖x + ht‖H‖x + kt‖H > 0. The result in

(2.21) follows from the zigzag-biconcavity and implies that E[U(fk, gk)] is a supermartingale.

Lemma 38 gives that v(fn, gn) ≤ U(fn, gn). Therefore,

E[v(fn, gn)] ≤ E[U(fn, gn)] ≤ E[U(fn−1, gn−1)] ≤ · · · ≤ E[U(d0, e0)].

But, E[U(d0, e0)] ≤ 0 in both pieces of Uτ since 2 − p∗ ≤ 0 and ‖e0‖H ≤ ‖d0‖H. Thus,

E[vτ (fn, gn)] ≤ 0. The constant, in the estimate, is best possible, since it was attained in

Theorem 41.

The following construction originated from a conversation with Fedja Nazarov.

Remark 44. For 1 < p < 2 and τ2 > 1
2p−1 , chosen sufficiently large, the “trivial” constant,(

(p∗ − 1)2 + τ2)p2 , in the main result is no longer sharp because of a “phase transition”. To

give a sense of why this is true one can show that for 1 < p < 2 fixed, the constant is no

longer sharp for τ sufficiently large.
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Let us construct such a function f to do this. First of all, fn ∈ Lp[0, 1] will be chosen so

that fn 6= 0 a.e. Let Cp = (p∗ − 1). Note that

∫
(|gn|2 + τ2|fn|2)

p
2 = |τ |p

∫
|fn|p

(
1 +

1

|τ |2
|gn|2

|fn|2

)p
2

= |τ |p
∫
|fn|p +

p

2|τ |2−p

∫
|gn|2

|fn|2−p

+
p

2

(p
2
− 1
) 1

2|τ |4−p

∫
|gn|4

|fn|4−p

(
1

1 + θn(x, τ)

)2−p2

=: |τ |p
∫
|fn|p + A+B

((p∗ − 1)2 + τ2)
p
2

∫
|fn|p = |τ |p

(
1 +

C2
p

|τ |2

)p
2 ∫
|fn|p

= |τ |p
∫
|fn|p +

pC2
p

2|τ |2−p

∫
|fn|p

+
p

2

(p
2
− 1
) C4

p

2|τ |4−p

∫
|fn|p

(
1

1 + θ̃n

)2−p2

=: |τ |p
∫
|fn|p + C +D,

where θn(x, τ), θ̃n ≥ 0.

Choose fn = χ[1
8 ,

1
4

)
∪
[5
8 ,

3
4

) − χ[3
8 ,

1
2

)
∪
[7
8 ,1
) − εnχ[

0,18

)
∪
[1
2 ,

5
8

) + εnχ[1
4 ,

3
8

)
∪
[3
4 ,

7
8

),
where εn > 0 is small. On the sets where |fn| = εn, we can choose the martingale transform

gn of fn not small. Indeed, without loss of generality choose x ∈
[
0, 1

8

)
and denote J1 =[

0, 1
4

)
. Then

fn(x) =
∑

I:I⊃J1

(f, hI )hI (x) = −εn.

55



Define a martingale transform gn as

gn(x) =
∑

I:I)J1

(f, hI )hI (x)− (f, hJ1
)hJ1

(x).

Then

fn(x)− gn(x) = 2(fn, hJ1
)hJ1

(x) = (2− εn)
√
|J1|

(
− 1√
|J1|

)
.

Therefore, fn(x) = −εn, yet its martingale transform gn(x) = 2−2εn, for x ∈ J1. The same

can be done for other intervals of smallness of fn. Note that
∫
|gn|2 =

∫
|fn|2 →

∫
|f |2 = 1

2 ,

if we choose εn → 0. So
∫
|gn|2 ≈ 1

2 , for n sufficiently large.

To show that
∫

(g2 + τ2f2)
p
2 > ((p∗−1)2+τ2)

p
2
∫
|f |p it suffices to show A+B > C+D.

As D ≤ 0 it is enough to prove A+B−C > 0. Let A′ = τ2−pA, C′ = τ2−pC, B′ = τ4−pB.

Regardless of the choice of τ we have A′ > 2C′ if n is chosen sufficiently large. In fact looking

at A′ we see that it is bigger than the integral, where the integrand has numerator close to

2 and denominator equal εn. On the other hand C′ involves just an integral with uniformly

(in n) bounded integrand. Then we fix n, of course |B′| is very large, but we notice that

choosing τ to be very large makes the following inequality true:

A+B − C =
1

|τ |2−p
[(A′ − C′)− 1

|τ |2
|B′|] > 0 .

This completes the example.

Remark 45. We would like to point out that that as p approaches 2 from the left that the τ

values for the main result do not improve to infinity, as we expect. So either there can be

some improvement in the range of τ -values for which we have the Bellman function, or the
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operator which we are studying in this chapter behaves in a very nonintuitive way.

2.5 Proof of Proposition 25

Throughout this section the arguments may seem brief in comparison to Section 2.2.1. The

reason for this is because we cover the exact same argument as in Section 2.2.1, only with

slightly different cases. So if any arguments are unclear, then returning to Section 2.2.1

should help to clear up any difficulties. We will first consider Case (32) to get a partial

Bellman function candidate.

2.5.1 Considering Case (32)

-

6

y2−y1

U

y1

y3

Figure 2.8: Sample characteristic of Monge-Ampère solution in Case (32)

Proposition 46. For 1 < p < ∞ and −y1 < y2 <
2−p
p y1, M is given implicitly by the

relation G(y1 − y2, y1 + y2) = y3G(1,
√
ω2 − τ2).

This is proven through a series of Lemmas.
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Lemma 47. M(y) = t2y2 + t3y3 + t0 on the characteristic y2dt2 + y3dt3 + dt0 = 0 can be

simplified to M(y) =

(√
(y1+u)2+τ2(y1−u)2

y1−u

)p
y3, where u is the unique solution to the

equation
y2+(1−2

p)y1
y3

=
u+(1−2

p)y1
(y1−u)p

and −y1 < y2 <
2−p
p y1.

Proof. Any characteristic, in Case(32), goes from U =
(
y1, u, (y1−u)p

)
to W = (y1,−y1, w).

Recall the properties of the Bellman function we derived in Proposition 7, as we will be using

them throughout the proof. Using the Neumann property and the property from Proposition

9, we get My1 = −My2 = −t2 at W. By homogeneity at W we get

−py1t2 + pwt3 + pt0 = pM(W ) = y1My1 + y2My2 + py3My3 = −2y1t2 + pwt3.

Now we follow the same idea as in Lemma 13, to get

M(y) =

(√(y1 + u)2 + τ2(y1 − u)2

y1 − u

)p
y3,

where u = u(y1, y2, y3) is the solution to the equation

y2 + (1− 2
p)y1

y3
=
u+ (1− 2

p)y1

(y1 − u)p
. (2.22)

Fix u = −(1− 2
p)y1. Then we see that y2 = −(2

p − 1)y1 = u is also fixed by (2.22). This

means that the characteristics must lie in the sector shown in Figure 2.9, since they go from

U to W ∈ {y2 = −y1}. The same argument as in Lemma 13 can be used to verify that

equation (2.22) has a unique solution in the sector −y1 < y2 <
2−p
p y1.
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y2 = y1

y2 = −y1

y2 =
(2−p
p
)
y1

y2

y1

Figure 2.9: Range of characteristics in Case (32) for 1 < p < 2.

Lemma 48. M(y) =

(√
(y1+u)2+τ2(y1−u)2

y1−u

)p
y3 can be rewritten as

G(y1 − y2, y1 + y2) = y3G(1,

√
ω2 − τ2), for − y1 < y2 <

2− p
p

y1.

Proof. ω =

(
M(y)
y3

)1
p

=

√
(y1+u)2+τ2(y1−u)2

y1−u
≥ |τ |

Since y1 ± u ≥ 0 and sinceω2 − τ2 ≥ 0, u =

√
ω2−τ2−1√
ω2−τ2+1

y1 by inversion. Substituting

u into
y2+(1−2

p)y1
y3

=
u+(1−2

p)y1
(y1−u)p

gives

2p−1y
p−1
1 [py2 + (p− 2)y1] = y3(

√
ω2 − τ2 + 1)p−1[

√
ω2 − τ2 − (p− 1)]

or (x1 + x2)p−1[(p− 1)x2 − x1]

=
[√

B2/p −
(
τx

1/p
3

)2 + x
1/p
3

]p−1[
(p− 1)

√
B2/p −

(
τx

1/p
3

)2 − x1/p
3

]
.

Thus, G(x1, x2) = G
(
x

1/p
3 ,

√
B2/p −

(
τx

1/p
3

)2) or equivalently

G(y1 − y2, y1 + y2) = y3G(1,

√
ω2 − τ2).
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As before, we must verify that this partial Bellman function candidate has the restrictive

concavity property, so y1 is no longer fixed. To check restrictive concavity, we must show

that My1y1 ≤ 0,My2y2 ≤ 0,My3y3 ≤ 0 and D1 ≥ 0 (note that D2 = 0 by assumption).

These estimates are verified in the following series of lemmas.

Lemma 49. In Case (32) we choose H(y1, y2) = G(y1 − y2, y1 + y2) because of how the

implicit solution is defined and obtain signH′′ = − sign(p− 2).

Proof. We already computed

H′′ =


4Gz1z2 , αj = βj

0, αj = −βj

in Lemma 16. Since, α1 = 1, α2 = −1, β1 = 1 and β2 = 1 then Gz1z2
= −p(p− 1)(p−

2)(y1 + y2)(2y1)p−3.

Remark 50. In Case (32), β > 1
p−1 in the sector −y1 < y2 <

2−p
p y1, where β :=

√
ω2 − τ2.

Equivalently, B(x1, x2, x3) ≥ ((p∗ − 1)2 + τ2)
p
2x3 in −y1 < y2 <

2−p
p y1.

This is trivial since

(β + 1)p−1[1− (p− 1)β] = G(1, β) =
1

y3
G(y1 − y2, y1 + y2)

= (2y1)p−1[(p− 2)y1 + py2] < 0.

Now we have enough information to check the sign of D1. We will start limiting the

values of τ, since it will be essential for having the restrictive concavity of the partial Bellman
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candidate from Case (22).

Lemma 51. D1 > 0 in Case (32) for all τ -values such that 1
p−1 ≥ τ2.

Proof. We use the partial derivatives of G computed in the proof of Lemma 16 to make the

computations of Φ′ and Φ′′ easier.

Φ(ω) = G(1, β)

Φ′(ω) = −p(p− 1)ω[β + 1]p−2 (2.23)

Φ′′(ω) = −p(p− 1)(1 + β)p−3

β

[
β(1 + β) + (p− 2)ω2

]
Λ = (p− 1)Φ′ − ωΦ′′

= −p(p− 1)2ω(β + 1)p−2 +
p(p− 1)ω(1 + β)p−3

β

[
β(1 + β) + (p− 2)ω2

]
=
p(p− 1)ω(1 + β)p−3

β

[
−(p− 1)(1 + β)β + β(1 + β) + (p− 2)ω2

]
= −p(p− 1)(p− 2)ω(1 + β)p−3[β − τ2]

β
(2.24)

Thus, signD1 = signH′′ sign Λ = [− sign(p− 2)]2 sign(β− τ2) by (2.12) and Lemma 49.

In order to have D1 > 0, we must have that β > τ2. By Remark 50, β > 1
p−1 . So if we

impose that 1
p−1 ≥ τ2 then we will have β > τ2 and therefore D1 > 0.

The following lemma restricts the p-values for which our solution is a Bellman function

candidate to 1 < p < 2.

Lemma 52. signMy1y1 = signMy2y2 = signMy3y3 = sign(p − 2) in Case (32) for all τ

such that τ2 ≤ p∗ − 1. Consequently, M is a Bellman function candidate for 1 < p < 2 but

not for 2 < p <∞, since it would not satisfy the restrictive concavity needed.
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Proof. By (2.10), (2.23), (2.24)),

My3y3 =
pωp−2R2

1H
2

y3
3

[
Λ

Φ′

]
,

giving signMy3y3 = (−1)[− sign(p− 2)]. By (2.11), for i = 1, 2,

Myiyi =
pωp−2R1

y3

[
(ωR2 + (p− 1)R1)(H′)2 + ωy3H

′′
]

=
pωp−2

y3(Φ′)3
[
Λ(H′)2 + ωy3H

′′(Φ′)2
]
,

giving signMyiyi = (−1)[− sign(p− 2)], since Φ′ < 0.

Now that we have a partial Bellman function candidate for 1 < p < 2, from Case (32),

satisfying all of the properties of the Bellman function, including restrictive concavity, we

can turn our attention to Case (22). From Case (22) we will get a Bellman candidate on all

Ξ+, or part of it, depending on the τ - and p-values. The partial Bellman candidate, from

Case (22), turns out to be the missing half for Case (32). We already have the solution for

Case (2) from Lemma 21, but the value of the constant is needed before we can progress

further.

2.5.2 Case (2) for 1 < p < 2

Lemma 53. If 1 < p < 2, then in Case (22), the value of the constant in Lemma 21 is

c =
(

1
(p−1)2

+ τ2
)p/2

=
(
(p∗ − 1)2 + τ2)p/2.

Proof. If M(y) = (1 + τ2)
p
2 [y2

1 + 2γy1y2 + y2
2]
p
2 + c[y3 − (y1 − y2)p] (where γ =

1− τ2

1 + τ2
)

is to be a candidate or partial candidate, then it must agree, at y2 =
2−p
p y1, with the
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solution M given implicitly by the relation G(y1 − y2, y1 + y2) = y3G(1,
√
ω2 − τ2), from

Proposition 46. At y2 =
2−p
p y1,

(

√
ω2 − τ2 + 1)p−1[1− (p− 1)

√
ω2 − τ2] = G(1,

√
ω2 − τ2)

=
1

y3
(2y1)p−1[(2− p)y1 + (p− 2)y1] = 0.

Since
√
ω2 − τ2 + 1 6= 0,

√
ω2 − τ2 = 1

p−1 , which implies ω =

(
1

(p−1)2
+ τ2

)1
2
. So,

(
1

(p− 1)2
+ τ2

)p
2
y3 = ωpy3

= M(y1,
2− p
p

y1, y3)

=

[(
2

p
y1

)2
+ τ2

(
2(p− 1)

p
y1

)2
]2
p

+ c

[
y3 −

(
2(p− 1)

p
y1

)p]
.

Now just solve for c.

In the following Lemma the value of τ has to be restricted to τ2 ≤ 1
2p−1 , so that

restrictive concavity is satisfied for our Bellman candidate. Actually, the τ -values play an

even bigger role. Depending on the value of (τ, p) ∈ [−1, 1] × (1, 2), there is either one

or two Bellman function candidates. For (τ, p) ∈ B, from Figure 2.10, there is a partial

Bellman candidate arising from Case (22). So we can glue this together with the other

partial candidate obtained in Case (32). This gives a Bellman candidate, as before, having

characteristics as in Figure 2.6. For (τ, p) ∈ A ∪ C the candidate obtained from Case (22)

maintains restrictive concavity throughout Ξ+ and is therefore requires no gluing. To avoid

the difficulty of determining which candidate to choose and how to determine the optimal
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constant from Case (2), we restrict (τ, p) to region B.

- τ

6
p

2

1.5

10.6−1 −0.6

A C

B B

Figure 2.10: Splitting [−1, 1] × (1, 2) in the (τ × p)–plane into three regions A,B and C.

Region B =
{
τ2 ≤ 1

2p−1

}
.

Recall that the partial Bellman candidate, M, obtained from Case (22), for 1 < p < 2,

satisfies Myiy3 = My3y3 = 0 and hence Di = 0, for i = 1, 2. So all that still needs to be

checked for restrictive concavity is the sign of My1y1 and My2y2 . Since My1y1 ≤ My2y2,

we just need to show that My2y2 ≤ 0 on
2−p
p y1 ≤ y2 ≤ y1 in Ξ+. This is considered in the

following Lemmas.

Lemma 54. In Case (22),My2y2(y1,
2−p
p y1, y3) ≤ 0 for τ2 ≤ 1

2p−1 and 1 < p < 2.

Proof. The solution M that we get from (22), when 1 < p < 2, is obtained from Lemmas 21

and 53. Let γ =
1− τ2

1 + τ2
, f1(y) = y2

1 + y2
2 + 2γy1y2, f2(y) = (p− 2)(y2 + γy1)2 + f1(y) and

f3(y) = y1 − y2. Then

My2y2 = p(1 + τ2)
p
2f

p−4
2

1 f2 − p(p− 1)

(
1

(p− 1)2
+ τ2

)p
2
f
p−2
3 .

To show that My2y2(y1,
2−p
p y1, y3) ≤ 0 we change to x-variables, make the substitution

s =
x2
x1

and multiply both sides of the inequality by (s2 + τ2)
4−p

2 . Denote F (s) as the left
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side of the new inequality. So we just need to show that

F (s) = (p− 2)(s− τ2)2 + (1 + τ2)(s2 + τ2)− (p− 1)((p∗ − 1)2 + τ2)
p
2 (s2 + τ2)

4−p
2 ≤ 0,

at s = p∗ − 1. Or equivalently we need to show that

τ2((p∗ − 1)2 + τ2) ≤ (p∗ − 1− τ2)2. (2.25)

Note that (2.25) reduces to τ2 ≤ 1
2p−1 . Therefore, My2y2(y1,

2−p
p y1, y3) ≤ 0 for τ2 ≤

1
2p−1 and 1 < p < 2.

Lemma 55. In Case (22),My2y2(y1, cy1, y3) ≤ 0, for all c ∈
[

2−p
p , 1

]
, for τ2 ≤ 1

2p−1

and 1 < p < 2.

Proof. Using My2y2 from Lemma 54 we see that My2y2 ≤ 0 is equivalent to

(1 + τ2)
p
2f

2−p
3 f2f

p−4
2

1 − p(p− 1)

(
1

(p− 1)2
+ τ2

)p
2 ≤ 0.

Observe that the function f2/(f

4−p
2

1 ) is strictly positive, has a horizontal asymptote at the

y2-axis, increases on (−∞,−γ), and decreases on (−γ,∞). As y2 increases from
2−p
p to 1,

f
2−p
3 and f2f

p−4
2

1 both decrease. Since My2y2(y1,
2−p
p y1, y3) ≤ 0 (as shown in Lemma

54), the result follows here as well.

Lemma 56. The Monge-Ampère solution in Case (22) yields the following results for 1 <

p < 2. My2y2(y1, y1, y3) < 0 for |τ | ≤ 1 and My2y2(y1,−y1, y3) > 0 for |τ | ≤ 1
2
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Proof. Let f1, f2 and f3 be as in Lemma 54 and

g = (1 + τ2)
p
2f

2−p
3 f2 − (p− 1)

( 1

(p− 1)2
+ τ2

)p
2f

4−p
2

1 .

Note that My2y2 and g have the same signs. It is clear that g(y1, y1, y3) < 0, proving the

first inequality. One can now verify that g(y1,−y1, y3) > 0 for |τ | ≤ 1
2 which proves the

second inequality.

Remark 57. One can see in the graph of y
2−p
1 g(y1, y1, y3) that g(y1, y1, y3) < 0, in regions

A and C, (see Figure 2.10). This tells us that the Bellman candidate from Case (22) will

maintain restrictive concavity throughout the domain in for (τ, p) ∈ A ∪ C. Furthermore,

there will be an improvement in the constant
(
(p∗ − 1)2 + τ2)p2 that can still be used to

still maintain restrictive concavity in A ∪ C.

By Lemmas 55 and 56 we obtain a partial Bellman candidate from Case (22), when

1 < p < 2 and τ satisfying τ2 ≤ 1
2p−1 . As before, we will glue this partial candidate

from Case (22) to the partial candidate in Case (32) to obtain the Bellman candidate for

1 < p < 2. This glued function will be a Bellman candidate since it satisfies all Bellman

function properties, including the estimates needed for restrictive concavity. However, we

must choose the smaller set of τ restrictions between the implicit and explicit part of the

candidate, so that restrictive concavity will be satisfied. In particular we must restrict τ

such that τ2 ≤ 1
2p−1 .
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2.6 Remaining cases and why they do not give the Bell-

man function candidate

Now that we have particular cases in which the Monge-Ampère solution gives a Bellman

function candidate, we would like to discuss the remaining cases. It can be shown that all

remaining cases do not yield a Bellman function candidate, except for Case (4) which is still

not determined.

2.6.1 Case (12) for 1 < p < 2 and Case (32) for 2 < p <∞

It was shown in Lemmas 20, 52 that the Monge-Ampère solution obtained in each case does

not have the appropriate restrictive concavity property to be a Bellman function candidate.

We mention this here again simply for clarity.

2.6.2 Case (11)

We can consider Cases (11) and (31) simultaneously, for part of the calculation, since the

same argument will work in both cases. In both cases, y2 is fixed and the Monge-Ampère

solution is given by M(y) = t1y1 + t3y3 + t0 on the characteristics dt1y1 + dt3y3 + dt0 = 0.

As shown in Figure 2.11, y2 ≥ 0 in case (12) and y2 ≤ 0 in Case (32), since if not then the

characteristics go outside of the domain Ξ+.

Lemma 58. In Cases (11) and (31), the solution to the Monge-Ampère can be written as,

M(y) =


√

(u+ y2)2 + τ2(u− y2)2

u− y2

p y3
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Figure 2.11: Sample characteristic for Monge-Ampère solution in Cases (11) and (31)

where u = u(y1, y2, y3) is the solution to the equation
y1+

(
2
p−1

)
|y2|

y3
=
u+
(

2
p−1

)
|y2|

(u−y2)p
.

Proof. Any characteristic, in Cases (11) and (31), go from U = (u, y2, (u − y2)p) to W =

(|y2|, y2, w). Throughout the proof we will use the properties of the Bellman function derived

in Proposition 7. Using the Neumann property and the property from Proposition 9 we get

y2My2 = y1My1 = |y2|t1 at W. By homogeneity at W we get

p|y2|t1 + pwt3 + pt0 = pM(W ) = y1My1 + y2My2 + py3My3 = 2t1|y2|+ pwt3.

Following the same argument as in Lemma 13, gives

M(y) =


√

(u+ y2)2 + τ2(u− y2)2

u− y2

p y3,
where u = u(y1, y2, y3) is the solution to the equation

y1 +
(

2
p − 1

)
|y2|

y3
=
u+

(
2
p − 1

)
|y2|

(u− y2)p
. (2.26)

Since the solution, M, does not satisfy the restrictive concavity property necessary to be
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the Bellman function (as we will soon show), we are not concerned about existence of the

solution u in equation (2.26).

Lemma 59. If ω =

(
M(y)
y3

)1
p
, then in Cases (11) and (31), the solution u to equation

(2.26) can be expressed as u =

√
ω2−τ2+1√
ω2−τ2−1

y2 and equation (2.26) can be rewritten as

2p|y2|
p−1[py1 + (2− p)|y2|] = y3|β − 1|p−1[p(β + 1) + (2− p)|β − 1|], (2.27)

where β =
√
ω2 − τ2. Furthermore, sign y2 = sign(β − 1).

Proof. Let us show that u =

√
ω2−τ2+1√
ω2−τ2−1

y2 first. This follows from inverting

om =

√
(u+ y2)2 + τ2(u− y2)2

u− y2
,

and using the properties ω ≥ |τ | and u± y2 ≥ 0. Now that we have u =

√
ω2−τ2+1√
ω2−τ2−1

y2, we

can use it to get the next result. Note that u ≥ 0 and
√
ω2 − τ2 ≥ 0, which implies that

sign y2 = sign(
√
ω2 − τ2 − 1). To get (2.27), simply plug u =

√
ω2−τ2+1√
ω2−τ2−1

y2 in equation

(2.26).

We can no longer discuss Cases (11) and (31) together, so for the remainder of the

Subsection the focus will be on Case (11) only.

Lemma 60. In Case (11), the solution M from Lemma 58 can be rewritten in the implicit

form

G(y2 + y1, y2 − y1) = y3G(

√
ω2 − τ2,−1),

where G(z1, z2) = (z1 + z2)p−1[z1 − (p− 1)z2].
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Proof. Recall that for Case (11) we have y2 > 0.

y2 =
1

2
(x2 − x1) > 0 =⇒ x2 > x1

sign(

√
ω2 − τ2 − 1) = sign y2 > 0 =⇒

√
ω2 − τ2 > 1 =⇒ ω >

√
τ2 + 1

So, B(x) = M(y) > y3(τ2 + 1)
p
2 . Now (2.27) can be rewritten as

(x2 − x1)p−1[(p− 1)x1 + x2] =[√
B2/p − τ2x

2/p
3 − x1/p

3

]p−1[√
B2/p − τ2x

2/p
3 + (p− 1)x

1/p
3

]
.

Therefore,

G(x2,−x1) = G
(√
B2/p − τ2x

2/p
3 ,−x2/p

3

)

or by factoring out x

1
p
3 on the right side we get

G(y2 + y1, y2 − y1) = y3G(

√
ω2 − τ2,−1).

Recall that the Monge-Ampère solution must satisfy the restrictive concavity conditions

in Proposition 6 to be a Bellman function candidate. We will show that the Monge-Ampère

solution obtained in Case (11) has D1 < 0 and therefore cannot be a Bellman candidate.

Lemma 61. In Case (11) we choose H(y1, y2) = G(y1 + y2,−y1 + y2) because of how the

implicit solution is defined and obtain signH′′ = sign(p− 2)
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Proof. We already computed

H′′ =


4Gz1z2 , αj = βj

0, αj = −βj

in Lemma 16.

Since, α1 = 1 since α2 = 1 since β1 = −1 and since β2 = 1,

Gz1z2
= p(p− 1)(p− 2)(y1 − y2)(2y2)p−3.

Lemma 62. If p 6= 2 then D2 < 0 in Case (11) for all τ.

Proof. We use the partial derivatives of G from the proof of Lemma 16 to make the compu-

tations of Φ′ and Φ′′ easier. Let αp =
p(p−1)ω(β−1)p−3

β3 and β =
√
ω2 − τ2.

Φ(ω) = G(β, 1)

Φ′(ω) = p[β − 1]p−2[ω + (p− 2)ωβ−1]

Φ′′(ω) = Gz1z2(β,−1)β−2ω2 +Gz1(β,−1)[−ωβ−3 + β−1]

= p(p− 1)[β − 1]p−3[β + p− 3]
ω2

β2
− pτ

2

β3
[β − 1]p−2[β + p− 2]

Λ = (p− 1)Φ′ − ωΦ′′

= αp[(β − 1)β3(β−1(p− 2) + 1)− ω2β(β + p− 3) + τ2(β − 1)(β + p− 2)]

= αp[(β2 + τ2)(β − 1)(β + p− 2)− ω2β(β + p− 3)]

= αpω
2[β2 + β(p− 2)− β − (p− 2)− β2 − β(p− 3)]

= −p(p− 1)(p− 2)ω3(
√
ω2 − τ2 − 1)p−3

(
√
ω2 − τ2)3

71



From Lemma 59, sign(β − 1) = sign y2 > 0 and ω2 > τ2 > 0. Therefore, by Lemma 61 and

(2.12) signD2 = signH′′ sign Λ = −(sign(p− 2))2 < 0.

Since D2 < 0 in Case (11), we get the following result.

Proposition 63. Case (11) does not give a Bellman function candidate.

2.6.3 Case (31) does not provide a Bellman function candidate

Much of the work needed to show that the Monge-Ampère solution cannot be the Bellman

function, in Case (31), has already been started in Section 2.6.2. Let us finish the argument.

Lemma 64. In Case (31), the solution M from Lemma 58 can be rewritten in the implicit

form G(y2 − y1,−y1 − y2) = y3G(1,−
√
ω2 − τ2), where G(z1, z2) = (z1 + z2)p−1[z1 −

(p− 1)z2].

Proof. Recall that in Case (32) we have that y2 < 0.

y2 =
1

2
(x2 − x1) < 0 =⇒ x2 < x1

sign(

√
ω2 − τ2 − 1) = sign y2 < 0 =⇒

√
ω2 − τ2 < 1 =⇒ ω <

√
τ2 + 1.

So, B(x) = M(y) < y3(τ2 + 1)
p
2 . Now (2.27) can be rewritten as

(x1−x2)p−1[x1+(p−1)x2] =
[
x

1/p
3 −

√
B2/p − τ2x

2/p
3

][
(p−1)

√
B2/p − τ2x

2/p
3 +x

1/p
3

]
.

Therefore,

G(x1,−x2) = G
(
x

1/p
3 ,−

√
B2/p − τ2x

2/p
3

)
,
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or by factoring out x
1/p
3 on the right side we get

G(y1 − y2,−y1 − y2) = y3G(1,−
√
ω2 − τ2).

Since y2 is fixed, D2 ≥ 0 must be true in order that the Monge-Ampère solution from

Case (31) is the Bellman function (see Proposition 6). However, the contrary is true: D2 < 0.

Lemma 65. In Case (31) we choose H(y1, y2) = G(y1 − y2,−y1 + y2) because of how the

implicit solution is defined and obtain signH′′ = sign(p− 2)

Proof. We already computed

H′′ =


4Gz1z2 , αj = βj

0, αj = −βj

in Lemma 16.

Since, α1 = 1, α2 = −1, β1 = −1 and β2 = 1, it follows that

Gz1z2
= p(p− 1)(p− 2)(y1 − y2)(2y2)p−3.

Lemma 66. If p 6= 2, then D2 < 0 in Case (31) for all τ.

Proof. We use the partial derivatives of G computed in the proof of Lemma 16 to make the

following computations of Φ′ and Φ′′ easier. Let β =
√
ω2 − τ2.

Φ(ω) = G(1,−β)

Φ′(ω) = −p(p− 1)ω(1− β)p−2

73



Φ′′(ω) = −p(p− 1)[(1− β)p−2 − (p− 2)ω2β−1]

Λ = (p− 1)Φ′ − ωΦ′′

= p(p− 1)ω(1− β)p−3[−(p− 1)(1− β) + (1− β)− (p− 2)ω2β−1]

= −p(p− 1)ω(1− β)p−3(p− 2)[1− β + ω2β−1]

= −p(p− 1)(p− 2)ω(1− β)p−3

(
1 +

τ2

β

)
.

From Lemma 59, 1−β > 0 and ω2 > τ2 > 0. Therefore, by Lemma 65 and (2.12) signD2 =

signH′′ sign Λ = −(sign(p− 2))2 < 0.

Having shown that D2 < 0 in Case (31) implies that the Monge-Ampère solution in that

case cannot be the Bellman function.

Proposition 67. Case (31) does not give a Bellman function candidate.

2.6.4 Case(21) gives a partial Bellman function candidate

Case (2) was considered without having to fix either y1 or y2 first, so there is nothing new

to do here. Refer to Sections 2.5.2 and 2.2.1.3 for more details.

2.6.5 Case (4) may or may not yield a Bellman function candidate

For τ = 0, it was shown in [36] that Case (4) does not produce a Bellman function candidate,

since some simple extremal functions give a contradiction to linearity of the Monge-Ampère

solution on characteristics. However, for τ 6= 0 it is much more difficult to show this. Those

same extremal functions do contradict linearity for some p-values and some signs of the

Martingale transform. For the sign of the Martingale transform where we do not have a
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Figure 2.12: Characteristic of solution in Case (41).
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Figure 2.13: Characteristic for the solution from Case (42)

contradiction, a new set of test of extremal functions would have to be found. Since the

Bellman function has already been constructed from other cases, this case has not been

investigated any further than just described. So, for p and τ values not mentioned in the

main result, Case (4) could give a Bellman candidate throughout Ξ+ or we could get a

partial Bellman candidate that may work well with the characteristics from Case (21).
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Chapter 3

Laminates Meet Burkholder

Functions

3.1 Introduction

In Chapter 2 the Lp-operator norm was computed for a “quadratic perturbation” of the mar-

tingale transform using the Bellman function technique, which is similar to how Burkholder

originally did, for τ = 0, in [15]. By “quadratic perturbation”, we are referring to the quan-

tity (Y 2 + τ2X2)
1
2 , where τ ∈ R is small, X is a martingale and Y is the corresponding

martingale transform.

The method of Bourgain [11], for the Hilbert transform, which was later generalized for

a large class of Fourier multiplier operators by Geiss, Montgomery-Smith, Saksman [24], is

to discretize the operator and generalize it to a higher dimensional setting. This operator in

the higher dimensional setting will turn out to have the same operator norm and it naturally

connects with discrete martingales, if done in a careful and clever way. In the end, one
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has the operator norm of the singular integral bounded below by the operator norm of

the martingale transform, which Burkholder found in [15]. This approach can be used for

estimating
∥∥∥(R2

1 − R
2
2 , τI

)∥∥∥
Lp→Lp

from below as well, see [10]. However, we will present

an entirely different approach to the problem.

Rather than working with estimates on the martingale transform, we only need to consider

the “Burkholder” functions that were used to find those sharp estimates on the martingale

transform. More specifically, we analyze the behavior of the “Burkholder” functions, U

and v found in Chapter 2 (and reiterated in Definition 76 and Theorem 78), associated

with determining the Lp-operator norm of the quadratic perturbation of the martingale

transform. Using the fact that U is the least bi-concave majorant of v (in the appropriately

chosen coordinates), in addition to some of the ways in which the two functions interact will

allow us to construct an appropriate sequence of laminates, which approximate the push

forward of the 2-dimensional Lebesgue measure by the Hessian of a smooth function with

compact support. Once the appropriate sequence of laminates is constructed, we are finished

since Riesz transforms can be written as fractional derivatives of some smooth function. The

beauty of this method is that it quickly gets us the sharp lower bound constant with very

easy calculations. This lower bound argument is discussed in Section 3.2.

The Burkholder functions U and v also play a crucial role in obtaining the sharp upper

bound estimate as well. With the Burkholder functions we are able to extend sharp esti-

mates of (Y 2 + τ2X2)
1
2 , obtained in Chapter 2, from the discrete martingale setting to the

continuous martingale setting. The use of “heat martingales”, as in [2] and [3], will allow us

to connect the Riesz transforms to the continuous martingales estimate, without picking up

any additional constants. This upper bound argument is presented in Section 3.4.
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3.2 Lower Bound Estimate

3.2.1 Laminates and gradients

We denote by Rm×n the space of real m×n matrices and by Rn×nsym the set of real n×n

symmetric matrices.

Definition 68. We say that a function f : Rm×n → R is rank-one convex, if t 7→ f(A+ tB)

is convex for all A,B ∈ Rm×n with rank B = 1.

Let P(Rm×n) denote the set of all compactly supported probability measures on Rm×n.

For ν ∈ P we denote by ν =
∫
Rm×n X dν(X) the center of mass or barycenter of ν.

Definition 69. A measure ν ∈ P is called a laminate, denoted ν ∈ L, if

f(ν) ≤
∫
Rm×n

f dν (3.1)

for all rank-one convex functions f . The set of laminates with barycenter 0 is denoted by

L0(Rm×n).

Laminates play an important role in several landmark applications of convex integration

for producing unexpected counterexamples, see for instance [30, 27, 1, 34, 21]. For our

purposes the case of 2× 2 symmetric matrices is of relevance, therefore in the following we

restrict attention to this case. The key point is that laminates can be viewed as probability

measures recording the gradient distribution of maps, see Theorem 72 below. This is by now

a very standard technique. Refer to [9] for the main steps of the argument. Detailed proofs

of these statements can be found for example in [30, 26, 34].
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Definition 70. Given a set U ⊂ R2×2 we call PL(U) the set of prelaminates generated in

U . This is the smallest class of probability measures on R2×2 which

• contains all measures of the form λδA+(1−λ)δB with λ ∈ [0, 1] and rank(A−B) = 1;

• is closed under splitting in the following sense if λδA + (1− λ)ν̃ belongs to PL(U) for

some ν̃ ∈ P(R2×2) and µ also belongs to PL(U) with µ = A, then also λµ+ (1− λ)ν̃

belongs to PL(U).

The order of a prelaminate denotes the number of splittings required to obtain the mea-

sure from a Dirac measure.

Example 71. The measure

1

4
δdiag(1,1) +

1

4
δdiag(−1,1) +

1

2
δdiag(0,−1),

where

diag(x, y) :=

x 0

0 y

 ,

is a second order prelaminate with barycenter 0.

It is clear from the definition that PL(U) consists of atomic measures. Also, from a

repeated application of Jensen’s inequality it follows that PL ⊂ L. The following statement,

links laminates supported on symmetric matrices with second derivatives of functions.

Theorem 72. Let ν ∈ L0(R2×2
sym). Then there exists a sequence uj ∈ C∞c (B1(0)) with

uniformly bounded second derivatives, such that

∫
B1(0)

φ(D2uj(x)) dx →
∫
R2×2
sym

φdν
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for all continuous φ : R2×2
sym → R.

3.2.2 Laminates and lower bounds

Let τ ∈ R be fixed. Our goal is to find

sup

ϕ∈S(R2)

∥∥∥((R2
1ϕ−R

2
2ϕ)2 + τ2(R2

1ϕ+R2
2ϕ)2

)1/2∥∥∥
p

‖R2
1ϕ+R2

2ϕ‖p
, (3.2)

for the planar Riesz transforms R1 and R2, where S(R2) is the Schwartz class. We can

rework the Riesz transforms acting on ϕ into the second derivative of a function u ∈ S(R2)

in the following way.

R2
i ϕ =

(
−
ξ2i
|ξ|2

ϕ̂

)∨
= ∂2

i u,

where “̂” denotes the Fourier transform, “∨” denotes the inverse Fourier transform and

−∆u = ϕ. So (3.2) is equivalent to

sup

u∈S(R2)

∫
|(∂2

11u− ∂
2
22u)2 + τ2(∂2

11u+ ∂2
22u)2|

p
2∫

|∂2
11u+ ∂2

22u|
p

. (3.3)

Let Aij denote, as usual, the ij-entry of a matrix A and put

φ1(A) = |(A11 − A22)2 + τ2(A11 + A22)2|
p
2 ,

φ2(A) = |A11 + A22|
p .

(3.4)
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Using a standard cut-off argument we can write replace S(R2) with C∞c (R2) and write (3.3)

as

sup

u∈C∞c (R2)

∫
φ1(D2u) dx∫
φ2(D2u) dx

. (3.5)

From Corollary 72 we deduce that

sup

u∈C∞c (R2)

∫
φ1(D2u) dx∫
φ2(D2u) dx

≥ sup

ν∈L0(R2×2
sym)

∫
φ1 dν∫
φ2 dν

. (3.6)

Our goal is therefore to prove the following

Theorem 73. For any 1 < p <∞ and τ ∈ R there exists a sequence νN ∈ L0(R2×2
sym) such

that ∫
φ1 dνN∫
φ2 dνN

→ ((p∗ − 1)2 + τ2)
p
2 .

3.2.3 Proof of Theorem 73

A function f(x, y) of two variables is said to be biconvex if the functions x 7→ f(x, y)

and y 7→ f(x, y) are convex for all x, y. We start with the following inequality for biconvex

functions in the plane.

Lemma 74. Let k ∈ (−1, 1) and N > 1. For every f ∈ C(R2) biconvex we have

f(1, 1) ≤ 1

1− k

∫ N

1

(
f(kt, t) + f(t, kt)

)
t
− 2

1−k dt
t

+ f(N,N)N
− 2

1−k . (3.7)

Proof. By a standard regularization argument it suffices to show the inequality for f ∈
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C1(R2) biconvex. The biconvexity implies the following elementary inequalities:

f(t, t) ≤ λεf(t, t+ ε) + (1− λε)f(t, kt), (3.8)

f(t, t+ ε) ≤ µεf(t+ ε, t+ ε) + (1− µε)f(k(t+ ε), t+ ε), (3.9)

where

λε = 1− ε

t(1− k) + ε

µε = 1− ε

t(1− k) + ε(1− k)
.

Combining (3.8) and (3.9) and observing that λε, µε = 1− ε
t(1−k)

+ o(ε), we obtain

f
(
t+ ε, t+ ε

)
− f(t, t)

ε
− 2

t(1− k)
f(t+ ε, t+ ε) ≥

− 1

t(1− k)

(
f(k(t+ ε), t+ ε) + f(t, kt)

)
+ o(1).

(3.10)

Letting ε→ 0+ this yields

− ∂

∂t
f(t, t) +

2

t(1− k)
f(t, t) ≤ 1

t(1− k)

(
f(kt, t) + f(t, kt)

)

Multiplying both sides by t
− 2

1−k and integrating, we obtain (3.7) as required.

The method of obtaining continuous laminates by integrating a differential inequality as

above is due to Kirchheim, and appeared first in the context of separate convexity in R3 in

[27].
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Next, for 1 < p <∞ let

k = 1− 2

p
,

so that p = 2
1−k . We need to differentiate between the cases 1 < p ≤ 2 and 2 < p <∞.

The case 1 < p ≤ 2.

Let µN ∈ P(R2×2) be defined by the RHS of (3.7), more precisely

∫
f dµN :=

1

1− k

∫ N

1

[
f
(
diag(kt, t)

)
+ f
(
diag(t, kt)

)]
t−p dt

t
+
f
(
diag(N,N)

)
Np

for f ∈ C(R2×2). Then µN is a probability with barycenter µN = diag(1, 1). Moreover,

observe that if f is rank-one convex, then (x, y) 7→ f(diag(x, y)) is biconvex. Therefore,

using Lemma 74 we see that µN is a laminate. Then, combining with the measure from

Example 71 (c.f. splitting procedure from Definition 70) we conclude that the measure

νN :=
1

4
µN +

1

4
δdiag(−1,1) +

1

2
δdiag(0,−1)

is a laminate with barycenter νN = 0. We claim that this sequence of laminates has the

desired properties for Theorem 73. To this end we calculate

∫
φ1 dµN = p|(1− k)2 + τ2(1 + k)2|p/2 logN + 2p,∫
φ2 dµN = p(1 + k)p logN.
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In particular we see that as N →∞

∫
φ1 dνN∫
φ2 dνN

→ |(1− k)2 + τ2(1 + k)2|p/2

(1 + k)p

=

[(
1− k
1 + k

)2
+ τ2

]p
=

[(
1

p− 1

)2
+ τ2

]p
= [(p∗ − 1)2 + τ2]p.

The case 2 < p <∞.

Let µ̃N ∈ P(R2×2) be defined by

∫
f dµ̃N :=

1

1− k

∫ N

1

[
f
(
diag(−kt, t)

)
+ f
(
diag(−t, kt)

)]
t−p dt

t
+
f
(
diag(−N,N)

)
Np

for f ∈ C(R2×2). Then µ̃N is a probability with barycenter µ̃N = diag(−1, 1). Moreover,

as before, we see that if f is rank-one convex, then (x, y) 7→ f(diag(−x, y)) is biconvex.

Therefore µ̃N is again a laminate, hence also

ν̃N :=
1

4
µ̃N +

1

4
δdiag(1,1) +

1

2
δdiag(0,−1)

is a laminate with barycenter 0. Repeating the calculations above, we obtain

∫
φ1 dν̃N∫
φ2 dν̃N

−→
N→∞

|(1 + k)2 + τ2(1− k)2|p/2

(1− k)p

=

[(
1 + k

1− k

)2
+ τ2

]p
= [(p− 1)2 + τ2]p = [(p∗ − 1)2 + τ2]p.
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3.3 Comparison with Burkholder functions

Now we will discuss the Burkholder functions introduced Chapter 2. Let p∗ − 1 :=

max
{
p− 1, 1

p−1

}
and x := (x1, x2) denote a point in R2. We will denote the coordinates

y := (y1, y2) ∈ R2, as the rotation of x by π
4 , that is

y1 =
x1 + x2

2
, y2 =

x1 − x2
2

.

Definition 75. We say that a function f := f(x1, x2) is zigzag concave if it is bi-concave

in the y-variables.

Definition 76. Let v(x1, x2) := vp,τ (x1, x2) = (τ2|x1|2 + |x2|2)
p
2 − ((p∗−1)2 +τ2)

p
2 |x1|p

and u(x1, x2) := up,τ (x1, x2) = αp(|x1|+ |x2|)p−1[|x2| − (p∗ − 1)|x1|], where

αp = p(1− 1
p∗ )p−1

(
1 + τ2

(p∗−1)2

)p−2
2

. For 1 < p < 2, we define

U(x1, x2) := Up,τ (x1, x2) =


v(x1, x2) : |x2| ≥ (p∗ − 1)|x1|

u(x1, x2) : |x2| ≤ (p∗ − 1)|x1|,

and for 2 < p <∞,

U(x1, x2) := Up,τ (x1, x2) =


u(x1, x2) : |x2| ≥ (p∗ − 1)|x1|

v(x1, x2) : |x2| ≤ (p∗ − 1)|x1|.

Definition 77. Denote

cM := inf {c : vc has a zigzag concave majorant and U is such that U(0, 0) = 0} .
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Now we will see the key relationship between the Burkholder functions U and v.

Theorem 78. 1) cM ≥ ((p∗ − 1)2 + τ2)
p
2 , for all 1 < p <∞ and all τ ∈ R.

2) cM = ((p∗ − 1)2 + τ2)
p
2 , for 1 < p < 2 and τ2 ≤ 1

2p−1 or 2 ≤ p <∞ and τ ∈ R.

3) If 1 < p < 2 and τ is sufficiently large then cM > ((p∗ − 1)2 + τ2)
p
2 .

Proof. 1) By way of contradiction, suppose that there is such a c̃ ∈ [0, ((p∗ − 1)2 + τ2)
p
2 )

that vc̃ has a zigzag concave majorant. Then following the upper bound estimate in Section

3.4, Theorem 93 would have c̃ as the upper bound of our quadratic perturbation. However,

this is impossible because of Theorem 73.

2) In Proposition 40 it was shown for 1 < p < 2 and τ2 ≤ 1
2p−1 or 2 ≤ p < ∞ and

τ ∈ R that for c = ((p∗ − 1)2 + τ2)
p
2 , vc has a zigzag concave majorant. This proves that

cM ≤ ((p∗ − 1)2 + τ2)
p
2 . Combining with 1) we get equality.

3) For 1 < p < 2 and τ ∈ R sufficiently large, U is no longer zigzag concave, while

still being a majorant of vc, with c = ((p∗ − 1)2 + τ2)
p
2 . We know that if τ is sufficiently

large and 1 < p < 2, the least c0 for which vc0 has a zigzag concave majorant must satisfy

c0 > ((p∗ − 1)2 + τ2)
p
2 . See [8], Remark 27. The condition τ2 ≤ 1

2p−1 is a sufficient

condition for U to be the zigzag concave majorant, but not necessary.

3.3.1 Analyzing the Burkholder functions U and v

We will use the y-coordinates, unless otherwise stated, from this point on. In the y-

coordinates,

Ũ(y1, y2) := U(y1 − y2, y1 + y2) = U(x1, x2),
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and it takes the following form. For 2 ≤ p <∞,

Ũ(y) =


ũ(y),

p−2
p y1 ≤ y2 ≤

p
p−2y1

ṽ(y), otherwise,

and for 1 < p < 2,

Ũ(y) =


ṽ(y),

2−p
p y1 ≤ y2 ≤

p
2−py1

ũ(y), otherwise,

(3.11)

where

ũ(y1, y2) := u(y1 − y2, y1 + y2) = u(x1, x2), ṽ(y1, y2) := v(y1 − y2, y1 + y2) = v(x1, x2).

We will fix 2 ≤ p <∞, as the dual range of p values is handled similarly. Denote

k :=
p

p− 2
. (3.12)

Then p = 2k
k−1

and p− 1 = k+1
k−1

. Also denote

Lk := {y2 = ky1}and L1
k

:=
{
y2 =

1

k
y1

}
. (3.13)

Observe that in the cone

C1 = {y1 ≤ y2 ≤ ky1},

Ũ is linear if we fix y2. Also, Ũ is linear if we fix y1 in the cone

C2 =
{1

k
y1 ≤ y2 ≤ y1

}
.
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Consequently, Ũ is almost linear in the “T-shape” graph, which we will denote as T , with

vertices {
(
1

k
(y1 + h), y1 + h), (y1, y1 + h), (y1 + h, y1 + h), (y1,

1

k
y1)

}
.

The only portion where Ũ is not linear is on the segment from (y1, y1) to (y1, y1 + h). It is

very small in comparison with the graph T.
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Figure 3.1: Splitting between u and ṽ in y1 × y2-plane.

By Theorem 78, Ũ ≥ ṽ in R2. But, on Lk and L1
k
, Ũ = ṽ. Also, observe that Ũ(0, 0) =

ṽ(0, 0) and ṽ ≥ 0 on C1 and C2. (This is easy to see in x-coordinates.) We will summarize

these important facts, so that we can later refer to them.

Proposition 79. 1) ṽ ≥ 0 on C1 and C2

2) ṽ(0, 0) = Ũ(0, 0) = 0

3) Ũ = ṽ on Lk and L1
k
.

4) Ũ is nearly linear on T.

3.3.2 Why the laminate sequence νN worked in Theorem 73
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Let φ1(y1, y2) := (|y1 − y2|2 + τ2|y1 + y2|2)
p
2 , φ2(y1, y2) := |y1 + y2|p.

Definition 80. Let cL := sup

{∫
φ1 dν∫
φ2 dν

: ν ∈ L0

}
.

Theorem 81. cM ≥ cL.

Proof. By the definition of cL, there exists a laminate ν ∈ L with barycenter 0, such that∫
φ1dν∫
φ2 dν

> cL − ε. This is equivalent to

∫
[φ1 − (cL − ε)φ2]dν > 0. (3.14)

We will now show that φ1 − (cL − ε)φ2 does not have a biconcave majorant. By changing

the variables back to x1, x2 we see that this means that vcL−ε(x1, x2) would not have a

zigzag concave majorant, thus proving that cL− ε ≤ cM. By way of contradiction, suppose

that b := cL − ε, and that φ1 − bφ2 ≤ U, which is biconcave. Then by (3.14),

0 <

∫
(φ1 − bφ2)dν ≤

∫
Udν ≤ U(ν) = U(0, 0) = 0.

This gives a contradiction and we are finished with the proof.

Definition 82. We denote (p, τ) ∈ T , if 1 < p < 2 and τ2 ≤ 1
2p−1 or 2 ≤ p < ∞ and

τ ∈ R.

Let us compose vc(x1, x2) with the change of variables

x1 = y1 + y2

x2 = y1 − y2.
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We get the function called

ṽc(y1, y2) := (|y1 − y2|
2 + τ2|y1 + y2|

2)
p
2 − c|y1 + y2|

p.

Recall that similarly Ũ(y1, y2) := U(y1 + y2, y1 − y2) = U(x1, x2).

Let us introduce the following notation.

Definition 83. cB :=
(
(p∗ − 1)2 + τ2)p2 .

Here B stands for Burkholder. Recall Definition 77 and let us also denote

Definition 84. cN :=
∥∥∥(R2

1 −R
2
2, τI

)∥∥∥
Lp(C,C)→Lp(C,C2)

.

Remark 85. For (p, τ) ∈ T , cL = cM = cB.

This follows immediately from Theorems 73, 78 and 81.

Moreover, we saw that for all p, τ

cL ≤ cN .

This is Corollary 72 essentially.

In Section 3.4 we are proving that

cN ≤ cM .

We wish to discuss the set Ω of pairs (p, τ), for which cL = cM. This set of pairs contains

T introduced above, but we do not know exactly the whole Ω. By what we have just said

if (p, τ) ∈ Ω, then the norm of our operator is cL, and we also know that for such pairs the
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sharp estimate from above for the norm is obtainable by means of finding the least c for

which vc has a zigzag concave majorant.

Now we want to see what kind of restriction the equality cL = cM imposes a priori.

Conjecture 86. If p, τ are such that cL = cM, then there exists a sequence of laminates

{νN} with barycenter 0, such that
∫
ŨcMdνN increases to 0.

Remark 87. In fact, this is exactly what happens on T . Namely, if νN = 1
4µN + 1

4δ(−1,1) +

1
2δ(0,−1) and (p, τ) ∈ T , then

−O(1) ≤
∫
ŨcMdνN ≤ 0.

If (p, τ) is not in T , but cL = cM, then we get something interesting. By the definition

of cL, there exists some νN with barycenter 0, and such that

∫
φ1 dνN∫
φ2 dνN

≥ cM−
1
N . Then

we get

− 1

N
≤
∫

(φ1 − cMφ2)dνN∫
φ2dνN

≤
∫
ŨcMdνN∫
φ2dνN

≤ 0.

Therefore, ∣∣∣∫ ŨcM dνN

∣∣∣ = o
(∫

φ2 dνN

)
. (3.15)

For (3.15) it would be sufficient to have

∣∣∣∫ ŨcM dνN

∣∣∣ = O(1).

Remembering that
∫
ŨcM dνN ≤ 0 we can write this as

−c ≤
∫
ŨcMdνN ≤ 0.
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This was exactly the case for (p, τ) ∈ T with νN = 1
4µN + 1

4δ(−1,1) + 1
2δ(0,−1). The reason

for that was because

µN = (1, 1) and

∫
ŨcMdµN = ŨcM(1, 1) (3.16)

For any w biconcave and µ with barycenter (1, 1) we have
∫
w dµ ≤ w(1, 1). But in (3.16)

we have the case when the equality is attained. To understand better the case when the

equality can be attained when integrating a biconcave function against a laminate, let us

consider first a simpler question when equality is attained in integrating the usual concave

function against a usual probability measure.

If w is concave, then
∫
w dµ ≤ w(1, 1) is true for any probability measure µ. There are

only two ways to get equality (i.e.,
∫
w dµ = w(1, 1)): 1) if µ is a delta measure at (1, 1) or

2) if w is linear on the convex hull of the support of measure µ (degenerate concave).

Coming back to the attained equality in (3.16), for biconcave ŨcM , we see that (3.16)

happened also exactly because the Burkholder function ŨcM , is not only biconcave on the

cones C1 ∪ C2, but degenerate biconcave, meaning that C1 ∪ C2 is foliated by curves on

which one of the concavities degenerates into linearity. We may conjecture that the same

geometric picture happens for those (p, τ) outside of T , for which cL = cM, but we do not

know how to prove this.

To summarize, we have the following.

• For all p and τ, cM ≥ cN ≥ cL ≥
(
(p∗ − 1)2 + τ2)p2 =: cB(p, τ). All four constants

coincide at least for (p, τ) ∈ T .

• For all p ∈ (1, 2), there exists a τ0 such that for all |τ | > τ0, cM > cB(p, τ) (by [7]
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Remark 27).

• (p, τ) such that cL = cM holds for all (p, τ) ∈ T , but may also be true outside of T .

• By a modification of [7], Remark 27, one can prove that for all p ∈ (1, 2), there exits

τ0 such that, for all |τ | ≥ τ0, cN > cB(p, τ).

• We of course expect that always cN = cL.

3.4 Upper Bound Estimate

3.4.1 Background information and notation

We will use similar notation, estimates and reasoning developed in [2] and [3]. Let Bt =

(Zt, T − t) denote space-time Brownian motion starting at (0, T ) ∈ R3
+ := R2 × (0,∞),

where Zt is standard Brownian motion in the plane. There is a pseudo-probability measure

PT associated with the process and we will denote ET as the corresponding expectation.

For φ ∈ C∞c (C), we denote Uφ(z, t), as the heat extension to the upper half space, in

other words Uφ is the solution to


∂tUφ −

1
2∆Uφ, R3

+

Uφ = φ, R2.

By Itô’s formula we get the relation,

Uφ(Bt)− Uφ(B0) =

∫ t

0
∇Uφ(Bs) · dZs, (3.17)
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which is a martingale. For a 2× 2 matrix A we denote

(A ∗ Uφ)t :=

∫ t

0
A∇Uφ(Bs) · dZs

as a martingale transform. Throughout Section 3.4 we will refer to the matrices

A1 =

1 0

0 0

 , A2 =

0 0

0 1

 , I =

1 0

0 1



If we rewrite (3.17) in the form

Xt = Xt1 + iXt2 = (I ∗ φ)t =

∫ t

0
∇Uφ(Bs) · dZs,

then its martingale transform will be denoted as

Yt = Y t1 + iY t2 = ((A1 − A2) ∗ φ)t =

∫ t

0
(A1 − A2)∇Uφ(Bs) · dZs.

The quadratic variation of Xi and Yi are

〈Xi〉t =

∫ t

0
|∇Uφi(Bs)|2 ds =

∫ t

0

∣∣∣∣
 ∂xUφi

(Bs)

−∂yUφi(Bs)

∣∣∣∣2 ds = 〈Yi〉t, for i = 1, 2.

Then, 〈X〉t = 〈X1〉t + 〈X2〉t = 〈Y1〉t + 〈Y2〉t = 〈Y 〉t.

Definition 88. A process H is called differentially subordinate to a process K, if d
dt
〈H〉t ≤

d
dt
〈K〉t.

We have computed that Y is differentially subordinate to X. Note that Y is the contin-
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uous version of the martingale transform (the discrete version of Burkholder’s martingale

transform is
∑n
k=1 dk →

∑n
k=1 εkdk, where εk ∈ {±1} and {dk}k is a martingale differ-

ence sequence and n ∈ Z+), since Y is differentially subordinate to X.

3.4.2 Extending the martingale estimate to continuous time mar-

tingales

Theorem 89. Let X and Y be two complex-valued martingales, such that Y is the martingale

transform of X (in other words d
dx
〈X〉t ≤ d

dx
〈Y 〉t). Then

‖τ2|X|2 + |Y |2‖p ≤
(
(p∗ − 1)2 + τ2)1

2‖X‖p,

with the best possible constant for 1 < p < 2 and τ2 ≤ 1
2p−1 or 2 ≤ p <∞ and τ ∈ R.

This was basically shown in Chapter 2, but we will give the idea of the proof. The proof

here only requires the same modification to continuous time martingales as was done in [3],

for τ = 0. Let

u(x, y) = p
(

1− 1

p∗
)p−1(

1 +
τ2

(p∗ − 1)2

)p−2
(|y| − (p∗ − 1)|x|)(|x|+ |y|)p−1 and

v(x, y) = (τ2|x|2 + |y|2)
p
2 −

(
(p∗ − 1)2 + τ2)1

2 |x|p.

It was shown in Theorem 78 that v ≤ u. The key properties of u and v, that will be used,

are:

(1) v(x, y) ≤ u(x, y)
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(2) For all x, y, h, k ∈ C, if |x||y| 6= 0, then

〈huxx(x, y), h〉+ 2〈huxy(x, y), k〉+ 〈kuyy(x, y), k〉 = −cp,τ (A+B + C),

where cp,τ > 0 is a constant only depending on τ and p and

A = p(p− 1)(|h|2 − |k|2)(|x|+ |y|)p−2, B = p(p− 2)[|k|2 − (y′, k)2]|y|−1(|x|+|y|)p−1
,

C = p(p− 1)(p− 2)[(x′, h) + (y′, k)]2|x|(|x|+ |y|)p−3,

where x′ = x/|x|, y′ = y/|y|.

(3) u(x, y) ≤ 0 if |y| ≤ |x|.

Since u here only differs from the one in [3] by a multiple of
(

1 + τ2

(p∗−1)2

)p−2
, the rest of

the argument follows in an identical way which we briefly outline.

By Itô’s formula,

u(Xt, Yt) = u(X0, Y0) +

∫ t

0
〈ux(Xs, Ys), dXs〉+

∫ t

0
〈uy(Xs, Ys), dYs〉+

It
2
,

where It contains the second order terms. We can assume, without loss of generality that

|Y0| ≤ |X0|, so that when we take expectation of u(Xt, Yt), we obtain Eu(Xt, Yt) ≤ E(It/2).

Using property (2) above, in the martingale setting, one can obtain

It ≤ −cp,τ
∫ t

0
(|Xs|+ |Ys|)p−2d(〈X〉s − 〈Y 〉s) ≤ 0,

since B,C ≥ 0 and using the differential subordinate assumption. Therefore, Ev(Xt, Yt) ≤ 0

by property (1) above.
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3.4.3 Connecting the martingales to the Riesz transforms

Now we choose Xt := (I ∗ Uφ)t and Yt := ((A1 − A2) ∗ Uφ)t to obtain the following

corollary of Theorem 89.

Corollary 90. If 1 < p < 2 and τ2 ≤ 1
2p−1 or 2 ≤ p <∞ and τ ∈ R, then

‖τ2|(I ∗ Uφ)t|
2 + |((A1 − A2) ∗ Uφ)t|

2‖p ≤ ((p∗ − 1)2 + τ2)
1
2‖(I ∗ Uφ)t‖p.

Proposition 91. For all φ ∈ C∞c and all p ∈ (1,∞), limT→∞‖(I ∗ Uφ)T ‖p ≤ ‖φ‖p.

This result was proven in [2].

Now we will connect the martingales Xt and Yt with the planar Riesz transforms,R1 and

R2, in the following way.

Proposition 92. For all φ ∈ C∞c (C),

lim
T→∞

∫
C

[
|ET (YT |BT = z)|2 + τ2|ET (XT |BT = z)|2

]p
2 dz

=

∫
C

[
|(R1 −R

2
2)φ|2 + τ2|(R1 +R2

2)φ|2
]p
2 dz.

This result follows almost immediately from the fact that, for all ψ, φ ∈ C∞c (C),

lim
T→∞

∫
C
ψET [YT |BT = z] dz =

∫
C
ψ(R2

1 −R
2
2)φ dz and (3.18)

lim
T→∞

∫
C
ψET [XT |BT = z] dz =

∫
C
ψ(R2

1 +R2
2)φ dz, (3.19)
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by [2]. By (3.18) and (3.19) we obtain that for all ψ, φ ∈ C∞c (C),

lim
T→∞

∫
C
ψ[|ET (YT |BT = z)|2 + τ2|ET (XT |BT = z)|2]

1
2 dz

=

∫
C
ψ[|(R1 −R

2
2)φ|2 + τ2|(R1 +R2

2)φ|2]
1
2 dz.

3.4.4 Main Result

Theorem 93. For 1 < p < 2 and τ2 ≤ 1
2p−1 or 2 ≤ p < ∞ and τ ∈ R we have the

following estimate.

∥∥[|(R2
1 −R

2
2)f |2 + τ2|f |2]

1
2
∥∥
p ≤ ((p∗ − 1)2 + τ2)

1
2‖f‖p

Let Ez0,T correspond to Brownian motion starting at (z0, T ) ∈ R3
+. Let φ ≥ 0 and

1
p + 1

q = 1. Then

∫
C

(|(R2
1 −R

2
2)φ|2 + τ2|φ|2)

1
2ψ(z)dz

=

∫
C

lim
T→∞

∫
C

(|E(z0,T )(YT |BT = z)|2 + τ2|E(z0,T )(XT |BT = z)|2)
1
2dz0ψ(z)dz

= lim
T→∞

∫
C

∫
C

∣∣∣∣
 E(z0,T )(YTψ(ZT )|BT = z)

τE(z0,T )(XTψ(ZT )|BT = z)

∣∣∣∣ dz dz0
≤ lim
T→∞

∫
C
E(z0,T )

∣∣∣∣
 YTψ(ZT )

τXTψ(ZT )

∣∣∣∣ dz0
≤
(

lim
T→∞

∫
C
E(z0,T )

∣∣∣∣
 YT

τXT

∣∣∣∣p dz0)1
p
(

lim
T→∞

∫
C
E(z0,T )|φ(ZT )|qdz0

)1
q
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=

(
lim

T→∞

∫
C
E(z0,T )

∣∣∣∣
 YT

τXT

∣∣∣∣pdz0)1
p
‖ψ‖Lq,

where the last equality is by Proposition 91. By linearity we have this result for any ψ ∈ Lq.

Therefore, by duality

(∫
C

(|(R2
1 −R

2
2)φ|2 + τ2|φ|2)

p
2

)1
p
≤
(

lim
T→∞

∫
C
E(z0,T )

∣∣∣∣
 YT

τXT

∣∣∣∣p dz0)1
p

=( lim
T→∞

ET [(|YT |+ τ2|XT |
2)
p
2 ])

1
p ≤ ((p∗ − 1)2 + τ2)

1
2 lim
T→∞

(E|XT |
p)

1
p

=((p∗ − 1)2 + τ2)
1
2‖φ‖Lp,

where the last inequality is due to Theorem 89 and the last equality is by Proposition 92.

Corollary 94. For 1 < p < 2 and τ2 ≤ 1
2p−1 or 2 ≤ p <∞ and τ ∈ R,

‖(2R1R2 , τI)‖
Lp(C,C)→Lp(C,C2)

=
∥∥∥(R2

1 −R
2
2 , τI

)∥∥∥
Lp(C,C)→Lp(C,C2)

=
(
(p∗ − 1)2 + τ2)1

2 .

Since R2
1−R

2
2 and 2R1R2 are just rotations of one another by π/4, we have the equality of

the two operator norms. The lower bound was computed as
(
(p∗−1)2+τ2)1

2 in Theorem 73

(or by another technique in [10]). The upper bound was just computed as the same, giving

the desired result.
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Chapter 4

Dissertation achievements and future

work

4.1 Contributions

A large class of Fourier multiplier operators, can be built out of linear combinations of

the product of two Riesz transforms. The Ahlfors–Beurling operator is one such example,

which has been discussed extensively in this dissertation. Fourier multiplier operators are

also referred to as singular integrals, a designation which becomes clear by looking at the

definition in (4.1). Let us now define what the Riesz transforms are.

The jth Riesz transform operator on Rd is defined as

Rjf(x) := cd lim
ε→0

∫
Rd\B(x,ε)

(xj − tj)f(t)

|x− t|d+1
dt (4.1)
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and is a well defined operator that takes Lp functions to Lp functions, where

cd :=
Γ((d+ 1)/2)

π(d+1)/2

is a constant which was suitably chosen so that (4.2) does not have any extra constants (and

Γ is the well known “gamma function”). One of the key properties of this operator is that

it is also a Fourier multiplier operator; in other words, if “̂” denotes the Fourier transform,

then

R̂jf(ξ) = i
ξj

|ξ|
f̂(ξ), (4.2)

with mj(ξ) = i
ξj
|ξ| being the associated Fourier multiplier. (Throughout ĝ denotes the

Fourier transform of g and g∨ denotes the inverse Fourier transform.)

The Riesz transforms arise naturally in partial differential equations in the following way.

If f is a rapidly decreasing function on Rd, and u is a solution to the Laplace equation,

∆u = f,

then taking the Fourier transform of the equation twice gives the well known formula û =

1
|ξ|2

f̂ . So we have

RjRkf =

(
−
ξjξk

|ξ|2
f̂

)∨
= (−ξjξkû)∨ = −uyjyk . (4.3)

Note that, we are only looking at the product (composition) of two Riesz transforms, since

that will be the focus here, but there is a similar formula for just one Riesz transform. So,

these Riesz transforms naturally arise by taking partial derivatives of solutions of partial
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differential equations. A. Calderón and A. Zygmund showed in the 1950’s that a large class

of singular integrals, including the Fourier multiplier operators (as long as the corresponding

multiplier is bounded), are bounded in Lp (meaning that their operator norm from Lp to Lp

is finite). Knowing that a singular integral is bounded can help gain more information about

the associated partial differential equation and its solution. But, being able to compute its

exact operator norm can give even more information. One such singular integral whose Lp

operator norm we computed exactly is a quadratic perturbation of the R2
1 − R

2
2 (the real

part of the Ahlfors–Beurling operator).

The approach of determining the operator norm of the perturbation of R2
1 − R2

2, was

to first determine the operator norm of the same perturbation of the martingale transform.

In Chapter 2, the exact Lp- operator norm was found for the quadratic perturbation of the

martingale transform. Furthermore, we found the exact Bellman function and the Burkholder

functions associated with the problem. Therefore, the celebrated result of Donald Burkholder

proven in the series of papers, [12] to [19], has been generalized.

From the results of Chapter 2, there are several different approaches for determining

the sharp lower bound estimate of the following operator norm:
∥∥∥(R2

1 −R
2
2 , τI

)∥∥∥
Lp→Lp

,

where R1 and R2 are the two components of the Riesz transform in the plane. One approach

uses a similar technique developed by J. Bourgain [11] which has then been generalized by

Geiss, Montgomery-Smith, Saksman [24]. The sharp lower bound estimate can be found

using this approach (in N. Boros, A. Volberg [10]), however we will instead discuss a new

approach described in Chapter 3. This new approach does not use the estimates obtained

in Theorem 43 of Chapter 2, but relies on the interaction between the Burkholder functions

U and v used to obtain the sharp estimate. This is an entirely new approach of estimating
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singular integral operators from below, in which we constructed an almost extremal sequence

for the operator, by means of laminates. The appropriate laminate sequence was constructed

by carefully studying the relationships of the Burkholder functions.

It should also be noted that there are very few singular integral operators whose exact

operator norm is known, as it is quite difficult to calculate this quantity for many singular

integral operators. The astute reader of Chapters 2 and 3, can see that this truly is the case

for
(
R2

1 −R
2
2 , τI

)
.

Most of the materials of this dissertation are adopted from the following publications and

preprints:

• N. Boros, L. Szèkelyhidi, Jr., A. Volberg, “Laminates Meet Burkholder Functions.”

submitted to the Duke Mathematical Journal, (2011).

• N. Boros, P. Janakiraman, A. Volberg, “Perturbation of Burkholder’s martingale

transform and Monge-Ampère equation”, submitted to Advances in Mathematics Jour-

nal, (2011).

• N. Boros, P. Janakiraman, A. Volberg, “Sharp Lp-bounds for a small perturbation

of Burkholder’s martingale transform”, to appear in Indiana University Mathematics

Journal, (2011).

• N. Boros, P. Janakiraman, A. Volberg, “Sharp Lp-bounds for a perturbation of

Burkholders Martingale Transform”, Ser. I, C. R. Acad. Sci. Paris, Ser. I, 349:

303–307, (2011).

• N. Boros, A. Volberg, “Sharp Lower bound estimates for vector-valued and matrix-

valued multipliers in Lp”, arXiv:1110.5405v1, (2010).
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4.2 Future work

Let B denote the Ahlfors-Beurling operator and ‖B‖p denote the operator norm from Lp to

Lp. It was shown in 1965, by O. Lehto [28], that ‖B‖p→p ≥ p∗ − 1. T. Iwaniec conjectured

in 1982, see [25], that ‖B‖p→p = p∗ − 1. There have been many attempts at proving this

conjecture: Bañuelos, Wang [4], Nazarov, Volberg [31], Bañuelos, Mèndez-Hernàndez [2],

Dragičević, Volberg [22], Bañuelos, Janakiraman [3] is the current list of attempts, which

have slowly gotten closer to the result but have still not attained it. The implications

of the validity of this nearly 30 year old conjecture are broad reaching into several fields,

such as harmonic analysis, partial differential equations and in the study of quasi-conformal

mappings (for more details on the implications see [22]).

There are two difficulties in estimating B. One is that B is a complex operator, in

fact there are very few complex operators for which we know the exact Lp operator norm.

Secondly, B is a linear combination of squares of Riesz transforms and a product of two Riesz

transforms. (Recall that <B = R2
1 − R

2
2 and =B = 2R1R2.) The method developed and

implemented for attaining the result in Corollary 94 can be applied to computing the exact

Lp norm of many other perturbation operators. In fact, two other such perturbations are a

linear perturbation already mentioned, <B + τ · I and a complex perturbation <B + τ · iI.

Since

aR2
1 + bR2

2 =
a− b

2
(R2

1 −R
2
2) +

a+ b

2
(R2

1 +R2
2)

=
a− b

2

[
(R2

1 −R
2
2) +

a+ b

a− b
(R2

1 +R2
2)
]

=
a− b

2

[
(R2

1 −R
2
2) +

a+ b

a− b
I
]
,
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the linear perturbation is just a constant multiple of aR2
1 + bR2

2. So we now have a way for

approaching the Lp operator norm of a linear combination of squares of Riesz transforms as

well as for a complex operator. The two results would be interesting not just in obtaining

the exact Lp of the perturbation of <B, but along the way two other very interesting

generalizations of Burkholder’s famous result would be found as well. These two problems

are joint works with P. Janakiraman and A. Volberg.
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