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Abstract. In the following, we will discuss weighted estimates for the squares of the
Riesz transforms R2

1, . . . , R
2
m on L2(W ) where W ∈ Cd×d is an A2 weight. We will

show that if the “Heat A2 characteristic” of W is sufficiently close to 1 then there is a
dimensional constant c > 0 such that

‖R2
i ‖2,W ≤ 1 + c

√
[W ]Ah

2
− 1,

for all i = 1, . . . ,m. This is accomplished by proving a Littlewood–Paley estimate with
the use of the Bellman function technique. These results follow the ones obtained in
[5], [6], where similar questions were considered for the case of scalar Muckenhoupt Ap

weights w. The use of matrix weights turns out to be much more complicated than the
scalar weights since the environment that we have to work in is no longer commutative.

1. introduction

Throughout this article, we will denote W as a positive, invertible and L1
loc(Rm), d× d

matrix with complex entries. For such W we define the heat extension to the upper half
space Rm+1

+ as the convolution of W with the fundamental solution k in Rm+1
+ of the heat

equation ut −∆u = 0,

W h(x, t) = kt ∗W (x) =
1

(4πt)
m
2

ˆ
Rm

W (y) exp
(
− |x− y|

2

4t

)
dy.

We define the heat A2 characteristic of W to be the supremum

[W ]Ah
2

= sup
(x,t)∈Rm+1

+

∥∥∥(W h(x, t))
1
2 ((W−1)h)

1
2 (x, t)

∥∥∥.
If this number is finite we say that W ∈ Ah2 .

The components of the Riesz transform in Rm, R1, . . . , Rm are defined in the usual way,
as the convolution operators

Rif(x) =
Γ(n+1

2 )

π
n+1
2

p.v.

ˆ
Rm

xi − yi
|x− y|m+1

f(y) dy,
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i = 1, . . . ,m. It is known that for i = 1, . . .m we have ‖Ri‖2 = 1, where by ‖ · ‖2 we denote
the operator norm in the Hilbert space L2.

The main theorem of this paper is the following continuity result about matrix weights
and the square of the Riesz transforms.

Theorem 1. There is a dimensional constant cd > 0 such that for all matrix weights W
of heat A2 characteristic sufficiently close to 1 the estimate

(1)
∥∥∥ n∑
i=1

σjiR
2
ji

∥∥∥
2,W
≤ 1 + cd

√
[W ]Ah

2
− 1

is satisfied, where {j1, j2, . . . , jn} is an arbitrary subset of {1, . . . ,m} and σ = {σji}ni=1 is
an arbitrary choice of signs.

Before we discuss the proof of Theorem 1 let us make some comments. It has been
proven by second author that the same question of the continuity of the operator norm of
a Calderón-Zygmund operator T in Lp(w) with respect to w, 1 < p < ∞, has a positive
answer for scalar Ap weights w (for the Muckenhoupt Ap classes see [1]). That is, if the
scalar weight w is “close” to the constant weight 1, then the number ‖T‖p,w is close to
‖T‖p. See [5] and [6]. Notice that in our case the heat A2 characteristic allows us to
have a measure of determining when a matrix weight W is “close” to the constant weight
Id and that [Id]Ah

2
= 1 since ‖k‖1 = 1. Hence, Theorem 1 is a matrix analogue of the

results appearing in [5] and [6]. Unfortunately, we only have the result for the square
of the Riesz transforms and not for the Riesz transforms themselves. In the scalar case
everything is much simpler since there is a very nice interplay between the Ap classes
and the BMO space, which allows us to go almost back and forth between weights and
functions of bounded mean oscillation. Such a relationship does not exist between matrix
A2 weights and BMO because there is no “good” analogue of BMO for matrix valued
functions. That is why we have to invent some “new” path connecting closeness between
W and Id and between the operator norm of an operator in L2(W ) and L2. The main
ingredient of the proof is the following Littlewood-Paley type estimate which is obtained
by using the Bellman function technique.

Theorem 2. There is a dimensional constant cd > 0 such that for all matrix weights W
of heat A2 characteristic sufficiently close to 1 the estimate

(2) 2

ˆ
Rm+1
+

m∑
i=1

∣∣∣(∂fh(x, t)

∂xi
,
∂gh(x, t)

∂xi

)
Cd

∣∣∣ dxdt ≤ (1 + cd
√

[W ]Ah
2
− 1)‖f‖2,W ‖g‖2,W−1

holds true for all vector functions f, g ∈ C∞c (Rm) with values in Cd.

It is known that in order to obtain an estimate as the one presented in Theorem 2 it
suffices to find a suitable Bellman function. For this reason we also have the following
theorem that guarantees that such a function exists.

Theorem 3. For any 0 < δ < 1, define the domain Dδ = {(X,Y, x, y, r, s) ∈ R+ × R+ ×
Cd × Cd × Cd×d × Cd×d : |(x, e)| ≤ X

1
2 (se, e)

1
2 , |(y, e)| ≤ Y

1
2 (re, e)

1
2 , 1 ≤ ‖r

1
2 s

1
2 ‖ ≤ 1 + δ},
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for all directions e ∈ Cd. Let K be any compact subset of Dδ. Then there exists a function
B = Bδ,K(X,Y, x, y, r, s) which is infinitely differentiable in a small neighborhood of K.
Furthermore, for any ε > 0, Bδ,K can be chosen in such a way that the following estimates
hold:

(A1) 0 ≤ B ≤ (1 + ε)(1 + c
√
δ)X1/2Y 1/2

(A2) − d2B ≥ 2|(dx, dy)|,

where c is a constant that depends on the dimension d.

This function will be obtained as a byproduct of a result first appeared in [4], which
states that a similar statement to the one presented in Theorem 1 holds for a version of
the Martingale transform. More precisely, let us consider a matrix weight W defined on R
and for each dyadic subinterval I of the real line the operator 〈W 〉I = 1

|I|
´
IW (sometimes

we also use WI to denote the average). It has a complete system of eigenvectors e1I , . . . , e
d
I

which we can assume to be an orthonormal basis of Cd and let us also denote by

hI(x) =
1√
|I|

(χI+(x)− χI−(x)),

the Haar function associated to I (we denote by I+ the right “son” of I and by I− the
left “son”). Our Martingale MW

σ , where σ = {σI} is a collection of signs, acts on vectors
functions f in the following way

MW
σ f(x) =

∑
I∈D

1≤k≤d

σkI (f, hIe
k
I )2 · hIekI .

In [4] it was proven that if the A2 characteristic of W ,

[W ]A2 = sup
I

∥∥∥〈W 〉 12I 〈W−1〉 12I ∥∥∥
is sufficiently close to 1 then there is a dimensional constant cd > 0 such that we have the
estimate

(3) ‖MW
σ ‖2,W ≤ 1 + cd

√
[W ]A2 − 1.

Now we have in our disposal all the ingredients of the proof which we are going to present
in the next section.

Let us elaborate on the motivation of studying weighted norm inequalities with ma-
trix weights. The motivation of studying estimates of this type comes from stochastic
processes and operator theory. Let us consider a multivariate random stationary pro-
cess. For simplicity we consider the case of discrete time i.e. a sequence of d-tuples
x(n) = (x1(n), . . . , xd(n)), n ∈ Z, of scalar random variables such that E|xj(n)|2 < +∞
and the correlation matrix

Q(n, k) = {Q(n, k)i,j}1≤i,j≤d := {Exi(n)xj(n)}1≤i,j≤d,
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depends only on the difference n − k (we use the symbol E to denote the expectation).
Without loss of generality we can assume that the process is complex valued. It is well
known (see [8]) that there exists a matrix valued non-negative measure M on the unit
circle T whose Fourier coefficients coincide with the entries of the correlation matrix

Q(n, k) = M̂(n, k),

n, k ∈ Z and that if the process is completely regular then its spectral measure, M , is
absolutely continuous with respect to the normalized Lebesgue measure m on the unit
circle, i.e. dM = Wdm. The past of the process is defined as

Xn = span{xj(k) : 1 ≤ j ≤ d, k < n}
and the future as

X n = span{xj(k) : 1 ≤ j ≤ d, k ≥ n}.
By writing “span” we mean the closed linear span in the complex Hilbert space L2(Ω, dP ).
If we consider the mapping

xj(k) 7→ zkej ,

where {ej}1≤j≤d is the standard orthonormal basis of Cd, then we obtain an isometric
isomorphism between span{xj(k) : 1 ≤ j ≤ d, k ∈ Z} and L2(W ). The past and the future
of the process are mapped to the subspaces of L2(W )

Xn = span{zkCd : k < n}
and

Xn = span{zkCd : k ≥ n},
respectively. In this representation the angle between past and future is nonzero if and only
if the Riesz projection P+ is bounded in the weighted space L2(W ). All these applications
and many more aspects of the theory of weighted inequalities with matrix weights are
thoroughly discussed in the introduction of [9] and the references therein.

2. the proofs of the theorems

First we begin with the proof of Theorem 3 that claims the existence of a certain Bellman
function.

Proof. Using duality in inequality (3) we get the following for all f ∈ L2(W ) and g ∈
L2(W−1) and J ∈ D

1

4|J |
∑

I∈D(J)

∑
k

|(〈f〉I+ , ekI )− (〈f〉I− , ekI )||(〈g〉I+ , ekI )− (〈g〉I− , ekI )||I|

≤ (1 + c
√

[W ]A2 − 1)
( ˆ

J
(Wf, f)dx

) 1
2
(ˆ

J
(W−1g, g) dx

) 1
2
.

Let us take a look at the sum over k. For fixed I the vectors {ekI}k constitute an orthonormal

basis of Cd and the first summand of the sum over k is the first coordinate of the vector
∆If := 〈f〉I+−〈f〉I− times the first coordinate of the vector ∆Ig. The same thing happens
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until the last summand. Here we have to notice the following equality, which can then be
estimated as

∑
k

|(〈f〉I+ , ekI )− (〈f〉I− , ekI )||(〈g〉I+ , ekI )− (〈g〉I− , ekI )||I|

=
∑
k

|(∆If, e
k
I )||(∆Ig, e

k
I )||I|

≥ |I|
∣∣∣∑
k

(∆If, e
k
I )(∆Ig, e

k
I )
∣∣∣

= |I|
∣∣∣(∆If,∆Ig)

∣∣∣.
So what we actually have proven is that

1

4|J |
∑

I∈D(J)

∣∣∣(〈f〉I+ − 〈f〉I− , 〈g〉I+ − 〈g〉I−)∣∣∣|I|
≤ (1 + c

√
[W ]A2 − 1)

(ˆ
J
(Wf, f) dx

) 1
2
(ˆ

J
(W−1g, g) dx

) 1
2
.

Hence, we can define the Bellman function to be the supremum of the left hand side

B(X,Y, x, y, r, s) = sup
{ 1

4|J |
∑

I∈D(J)

∣∣∣(〈f〉I+ − 〈f〉I− , 〈g〉I+ − 〈g〉I−)∣∣∣|I| :
x = 〈f〉I , y = 〈g〉I , X =

ˆ
J
(Wf, f) dx, Y =

ˆ
J
(W−1g, g) dx, r = 〈W 〉J , s = 〈W−1〉J

}
over the domain

DQ = {(X,Y, x, y, r, s) ∈ Cd × Cd × R+ × R+ × Cd×d × Cd×d :

|(x, e)| ≤ X
1
2 (se, e)

1
2 , |(y, e)| ≤ Y

1
2 (re, e)

1
2 , 1 ≤ ‖r

1
2 s

1
2 ‖ ≤ 1 + δ},

for all directions e in Cd and a fixed δ ∈ (0, 1).
Obviously, the function B satisfies

(4) 0 ≤ B(X,Y, x, y, r, s) ≤ (1 + c
√
δ)X

1
2Y

1
2

Notice that B does not depend on the choice of the interval J . This happens because
averages of functions remain the same under the use of a linear transformation. In addition,
we claim that for all 6-tuples a+ = (X+, Y +, x+, y+, r+, s+), a− = (X−, Y −, x−, y−, r−, s−) ∈
Dδ, such that a++a−

2 ∈ Dδ, the following inequality is true

(5) B
(a+ + a−

2

)
− B(a+) +B(a−)

2
≥ 1

4
|(x+ − x−, y+ − y−)|.
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To prove this claim let us consider a positive ε. There exists functions f+, g+,W+ on J+
such that they satisfy the conditions in the supremum of the function B for the vector a+

and

B(a+)− ε ≤ 1

4|J+|
∑

I∈D(J+)

|(〈f+〉I+ − 〈f+〉I− , 〈g+〉I+ − 〈g+〉I−)||I|.

Do the same for the vector a− in the interval J−. Define the functions F, G, W on the inter-

val J as: F =

{
f+ , on J+

f− , on J−
, G =

{
g+ , on J+

g− , on J−
, and, W =

{
W+ , on J+

W− , on J−
.

Observe that they satisfy the required equalities in order to be acceptable for the supremum

that defines the Bellman function for the vector a++a−

2 and therefore,

B

(
a+ + a−

2

)
≥ 1

4|J |
∑

I∈D(J)

|(〈F 〉I+ − 〈F 〉I− , 〈G〉I+ − 〈G〉I−)||I| =

1

4
· 1

2|J+|
∑

I∈D(J+)

|(〈f+〉I+ − 〈f+〉I− , 〈g+〉I+ − 〈g+〉I−)||I|

+
1

4
· 1

2|J−|
∑

I∈D(J−)

|(〈f−〉I+ − 〈f−〉I− , 〈g−〉I+ − 〈g−〉I−)||I|

+
1

4|J |
· term(I = J)

≥ 1

2
(B(a+)− ε) +

1

2
(B(a−)− ε) +

1

4
|(x+ − x−, y+ − y−)|.

Now we need to mollify this function B, in order to make it smooth. This can be done
in exactly the same way as in [2]. The concavity inequality remains the same after the
mollification and the size condition can become 1+CKε times worse, where CK is a constant
that depends on the compact set K. �

The next step is to prove Theorem 2. But, now that we have the Bellman function this
proof is basically the same with the one given in [7]. The only difference is that we work
with the function

v(x, t) = ((Wf, f)h(x, t), (W−1g, g)h(x, t), fh(x, t), gh(x, t),W h(x, t), (W−1)h(x, t)).

Finally, for the proof of Theorem 1 we need to observe only the following result (for a proof
see [2]).

Proposition 4. Let φ, ψ be real functions in C∞c (Rm). Then the integral
´ ∂φh

∂xi
· ∂ψ

h

∂xi
dxdt

converges absolutely for all i = 1, . . . ,m andˆ
Rm

R2
iφ · ψdx = −2

ˆ
Rm+1
+

∂φh

∂xi
· ∂ψ

h

∂xi
dxdt.
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Therefore, the left hand side of inequality (1) is bounded from above by the left hand
side of inequality (2) and this means that we have the desired estimate.

Acknowledgments: The authors would like to thank professor Alexander Volberg from
Michigan State University in East Lansing for useful discussions.

References

[1] J. Garcia-Cuerva and J. Rubio De Francia, Weighted norm inequalities and related topics, North
Holland Math. Stud. 116, North Holland, Amsterdam 1985.

[2] F. Nazarov and A. Volberg, Heating of the Ahlfors-Beurling operator and estimates of it’s norms,
St. Petersburg Math. J. Vol. 15 (2004), No. 4, Pages 563-573.

[3] M. Papadimitrakis and N. Pattakos, Continuity of weighted estimates for sublinear operators,
arXiv:1206.4580v1 and to appear Proceedings of the Edinburgh mathematical society .

[4] N. Pattakos, Continuity of weighted estimates in Harmonic Analysis with respect to the weight, Thesis,
Michigan State University, 2012.

[5] N. Pattakos and A. Volberg, Continuity of weighted estimates in Ap norm, Proc. Amer. Math.
Soc. 140 (2012), 2783-2790.

[6] N. Pattakos and A. Volberg, The Muckenhoupt A∞ class as a metric space and continuity of
weighted estimates, Math. Res. Lett. 19 (2012), no. 02, 499-510.

[7] S. Petermichl and A. Volberg,Heating of the Ahlfors-Beurling operator: Weakly quasiregular maps
on the plane are quasiregular, Duke Math. J. 112 (2002), no. 2, 281-305.

[8] Yu. A. Rozanov, Stationary stochastic processes, Holden-Day, SF, 1967.
[9] S. Treil and A. Volberg, Wavelets and the angle between the Past and the Future,Journal of Func-

tional Analysis 143, 269-308 (1997).
[10] S. Treil and A. Volberg, Completely regular multivariate stationary processes and the Muckenhoupt

condition, Pacific J. Math. Vol. 190 (1999), No. 2, 361382.
[11] A. Volberg, Matrix Ap weights via S-functions, Journal of the American Mathematical Society Vol-

ume 10, Number 2, April 1997, Pages 445-466.

N. Boros: Dept. of Mathematics, Olivet Nazarene University, Bourbonnais, Illinois, USA.
e-mail address: nboros@olivet.edu

N. Pattakos: School of Mathematics, University of Birmingham, Edgbaston, England.
e-mail address: nikolaos.pattakos@gmail.com


	1. introduction
	2. the proofs of the theorems
	References

